Skip to main content
Log in

Cloning and Identification of Differentially Expressed Genes Associated with Smut in Sugarcane

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The aim of this experiment was to evaluate the molecular mechanism of sugarcane response to the smut pathogen at the beginning of the pathogen infection of sugarcane seedlings, to explore related genes, and to provide useful information for developing rational strategies to control smut at early stages of disease development. A suppression subtractive hybridization library was constructed using cDNA synthesized from RNA extracted from normal stalks as driver and inoculated stalks as tester. The positive clones of the libraries were sequenced randomly, analyzed by BLAST, and classified by GO. A total of 248 positive clones were selected for sequencing, and a total of 224 EST sequences were obtained. In total, 188 ESTs were found to share a considerable homology with known genes, while the remaining 36 ESTs had no homology with known genes. In the Gene Ontology database, the unigenes were assigned functional descriptions; 152, 129, and 139 ESTs were, respectively, involved in cell component, molecular function, and biological process. Some genes related to a smut pathogen infection were obtained, while the SSH library was constructed. These genes reflected the regulation of sugarcane to smut pathogen and can be used as candidate genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Borras-Hidalgo, O., B.P.H.J. Thomma, E. Carmona, C.J. Borroto, M. Pujol, A. Arencibia, and J. Lopez. 2005. Identification of genes induced in disease-resistant somaclones upon inoculation with Ustilago scitaminea or Bipolaris sacchari. Plant Physiology and Biochemistry 43: 1115–1121.

    Article  CAS  Google Scholar 

  • Cho, S.K., J.U. Jeung, K.H. Kang, K.S. Shim, K.W. Jung, M.K. You, S.H. Ok, Y.S. Chung, H.G. Hwang, H.C. Choi, H.P. Moon, and J.S. Shin. 2004. Identification of genes induced in wound treated wild rice (Oryza minuta). Molecules and Cell 17: 230–236.

    CAS  Google Scholar 

  • D’Hont, A., and J. Glaszmann. 2001. Sugarcane genome analysis with molecular markers: A first decade of research. Proceedings of the International Society of Sugar Cane Technologists 24: 556–559.

    Google Scholar 

  • Hassan, A., T. Okuta, M. Kato, N. Hatsugai, Y. Sano, T. Ishimori, K. Okazaki, M.A. Doullah, and M.M. Shah. 2012. Alternaric acid stimulates phosphorylation of His-tagged RiCDPK2, a calcium-dependent protein kinase in potato plants. Genetics and Molecular Research 11: 2381–2389.

    Article  CAS  Google Scholar 

  • Hu, H.H., M.Q. Dai, J.L. Yao, B.Z. Xiao, X.H. Li, Q.F. Zhang, and L.Z. Xiong. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the USA 103: 12987–12992.

    Article  CAS  Google Scholar 

  • Hwang, I.S., and B.K. Hwang. 2010. Role of the pepper cytochrome P450 gene CaCYP450A in defense responses against microbial pathogens. Planta 232: 1409–1421.

    Article  CAS  Google Scholar 

  • Kim, Y.C., S.Y. Kim, K.H. Paek, D. Choi, and J.M. Park. 2006. Suppression of CaCYP1, a novel cytochrome P450 gene, compromises the basal pathogen defense response of pepper plants. Biochemical and Biophysical Research Communications 345: 638–645.

    Article  CAS  Google Scholar 

  • Lee, S.K., B.G. Kim, T. Kwon, M.J. Jeong, S.R. Park, J.W. Lee, M.O. Byun, H.B. Kwon, B.F. Matthews, C.B. Hong, and S.C. Park. 2011. Overexpression of the mitogen-activated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice (Oryza sativa L.). Journal of Biosciences 36: 139–151.

    Article  CAS  Google Scholar 

  • Liu, J. 2000. Suppression subtractive hybridization separated early development of rice panicle-specific genes. Chinese Science Bulletin 45: 1392–1397.

    Google Scholar 

  • Ludwig, A.A., T. Romeis, and J.D. Jones. 2004. CDPK-mediated signalling pathways: Specificity and cross-talk. Journal of Experimental Botany 55: 181–188.

    Article  CAS  Google Scholar 

  • Mahe, A., J. Grisvard, and M. Dron. 1992. Fungal-and plant-specific gene markers to follow the bean anthracnose infection process and normalize a bean chitinase mRNA induction. Molecular Plant-Microbe Interactions 5: 242–248.

    Article  CAS  Google Scholar 

  • Mall, T.K., I. Dweikat, S.J. Sato, N. Neresian, K. Xu, Z. Ge, D. Wang, T. Elthon, and T. Clemente. 2011. Expression of the rice CDPK-7 in sorghum: Molecular and phenotypic analyses. Plant Molecular Biology 75: 467–479.

    Article  CAS  Google Scholar 

  • Mauch, F., B. Mauch-Mani, and T. Boller. 1988. Antifungal hydrolases in pea tissue II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiology 88: 936–942.

    Article  CAS  Google Scholar 

  • Nakai, Y., Y. Nakahira, H. Sumida, K. Takebayashi, Y. Nagasawa, K. Yamasaki, M. Akiyama, M. Ohme-Takagi, S. Fujiwara, T. Shiina, N. Mitsuda, E. Fukusaki, Y. Kubo, and M.H. Sato. 2013. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Plant Journal 73: 761–775.

    Article  CAS  Google Scholar 

  • Nan, X.R. 2006. Transformation and expression of chitinase in potato. Chinese Agricultural Science Bulletin 22: 75–77.

    Google Scholar 

  • Olmos, E.O., J.R. Martínez-Solano, A. Piqueras, and E. Hellín. 2003. Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). Journal of Experimental Botany 54: 291–301.

    Article  CAS  Google Scholar 

  • Que, Y.X., L.P. Xu, J.W. Lin, J.S. Xu, J.S. Zhang, M.Q. Zhang, and R.K. Chen. 2009. Application of E. arundinaceus cDNA microarray in the study of differentially expressed genes induced by U. scitaminea. Acta Agronomica Sinica 35: 940–945.

    Article  CAS  Google Scholar 

  • Que, Y.X., L.P. Xu, J.P. Lin, M.H. Ruan, M.Q. Zhang, and R.K. Chen. 2011. Differential protein expression in sugarcane during sugarcane–Sporisorium scitamineum interaction revealed by 2-DE and MALDI-TOF-TOF/MS. Comparative and Functional Genomics 2011: 989016.

    Article  Google Scholar 

  • Santiago, R., R. de Armas, B. Fontaniella, C. Vicente, and M.E. Legaz. 2009. Changes in soluble and cell wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. European Journal of Plant Pathology 124: 439–450.

    Article  CAS  Google Scholar 

  • Schlumbaum, A., F. Mauch, U. Vögeli, and T. Boller. 1986. Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367.

    Article  CAS  Google Scholar 

  • Shi, J., J.J. Hu, H.L. Wang, L.M. Man, and Y.L. Zhang. 2002. The relationship between cell wall hydrolase activity induced by Plasmopara viticola and resistance of grapevine to downy mildew. Journal of Northwest Forestry University 17: 42–44.

    Google Scholar 

  • Singh, N., B.M. Somai, and D. Pillay. 2004. Smut disease assessment by PCR and microscopy in inoculated tissue cultured sugarcane cultivars. Plant Science 167: 987–994.

    Article  CAS  Google Scholar 

  • Tran, L.S.P., K. Nakashima, Y. Sakuma, S.D. Simpson, Y. Fujita, K. Maruyama, M. Fujita, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell Online 16: 2481–2498.

    Article  CAS  Google Scholar 

  • Wan, P., L.J. Ling, W.J. Zhou, W.J. Zhang, H.Q. Ling, L.H. Zhu, and X.Q. Zhang. 2004. Cloning, sequence and expression analysis of a zinc finger protein gene in wheat. Acta Genetica Sinica 31: 895–900.

    CAS  PubMed  Google Scholar 

  • Yang, Z.R., X. Mao, Z.F. Yang, and R.Z. Li. 2003. Cytochrome p450 genes and their application in plant improvement. Heredity 25: 237–240.

    CAS  Google Scholar 

  • Yeh, S.H., C.S. Lin, F.H. Wu, and A.Y. Wang. 2011. Analysis of the expression of BohLOL1, which encodes an LSD1-like zinc finger protein in Bambusa oldhamii. Planta 234: 1179–1189.

    Article  CAS  Google Scholar 

  • Zhu, X.Q., Y.Y. Shen, Y.Q. Feng, and L. Qin. 2009. Application suppressant subtraction hybrid separation Chinese chestnut shortmale inflorescence bud mutation related genes. Journal of Fruit Science 26: 340–343.

    CAS  Google Scholar 

  • Zuo, Y.H., Z.S. Kang, C.P. Yang, H.Y. Rui, S.B. Lou, and T.R. Liu. 2009. Relationship between activities of β-1,3-glucanase and chitinase and resistance to phytophthora root rot in soybean. Acta Phytopathologica Sinica 39: 600–607.

    Google Scholar 

Download references

Funding

This article was supported by Guangxi Natural Science Fund (2015GXNSFBA139060), Guangxi Academy of Agricultural Sciences Fund (GNK 2016JZ01), Guangxi Key Laboratory of Sugarcane Genetic Improvement Fund (16-A-04-02), National 863 Projects of China (2013AA102604-01), Guangxi Funds for Bagui Scholars and Distinguished Experts (2013-03), and Fund for Guangxi Innovation Teams of Modern Agriculture Technology (gjnytxgxcxtd-03-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Tao Yang or Yang-Rui Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, XP., Tian, DD., Chen, MH. et al. Cloning and Identification of Differentially Expressed Genes Associated with Smut in Sugarcane. Sugar Tech 20, 717–724 (2018). https://doi.org/10.1007/s12355-018-0610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-018-0610-6

Keywords

Navigation