Skip to main content

Advertisement

Log in

Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

Performance evaluation of poverty alleviation (PA) is one of the important tools to promote the effective linkage between PA and rural revitalization in China. This paper exposes the internal structure of PA and specifies its input–output process as a two-stage series system consisting of public investment and PA processes. Based on the centralized and decentralized management mechanisms, we propose non-convex global two-stage data envelopment analysis (DEA) models and non-convex global Malmquist productivity indices (GMPIs) to measure the dynamic efficiency of each PA system and its changes. We select 22 provinces (regions) in China as decision making units (DMUs) to illustrate the validity of the proposed models. The results show that: (i) the global PA efficiencies of the overall system (subsystems) are increasing over time, and most of them have already been at a high efficiency in the recent period; (ii) there is a certain inconsistency in the performance development trends of the overall system and subsystems, particularly in terms of the non-convex GMPI, local efficiency change (LEC), and best practice change (BPC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Figs. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The projection of the intermediate measure in the centralized two-stage DEA model has been discussed by Chen et al. (2010) and Lim and Zhu (2016). They consider the projection of the intermediate measure to be any value within the interval \({Z}^{t*}\in [\sum_{j=1}^{n}{\mu }_{j}^{t*}{Z}_{j}^{t}, \sum_{j=1}^{n}{\lambda }_{j}^{t*}{Z}_{j}^{t}]\), where \({\mu }_{j}^{t*}\) and \({\lambda }_{j}^{t*}\) denote the optimal solutions of Model (7).

  2. It is worth noting that the LEC may not provide much decision support for decision-makers compared to the GMPI and BPC because the DDFs obtained from two local production technologies are not very comparable.

  3. The specific provinces (regions) see the Poverty Monitoring Report of China Rural. In fact, the selected 22 provinces (regions) are the key focus of the PA tasks and the main flow of special funds for the PA in China (e.g., in 2019, the proportion of special funds for PA in the 22 provinces (regions) is 97.3 percent of the total special funds). In addition, in terms of individual level, at the end of 2019, the number of poor people in the 22 provinces (regions) is roughly located at [100,000, 500,000] and the PCDI is broadly situated at [8,000 RMB, 14,000 RMB], although there are differences between individuals, they all have to be reduced (raised) in the number of poor people (income level of poor people). In other words, the primary goal of these 22 provinces (regions) is to get out of poverty, therefore, they are comparable to each other from the performance evaluation perspective.

  4. The website is http://www.cpad.gov.cn/col/col2360/index.html.

  5. Here the first-level indicators are IPS, HHF and DCG respectively, and the corresponding second-level indicators for each first-level indicator are shown in Table 1.

References

  • Afsharian M, Podinovski VV (2018) A linear programming approach to efficiency evaluation in nonconvex metatechnologies. Eur J Oper Res 268(1):268–280

    Google Scholar 

  • Afsharian M, Ahn H, Harms SG (2018) A non-convex meta-frontier Malmquist index for measuring productivity over time. IMA J Manag Math 29(4):377–392

    Google Scholar 

  • Assaf A, Barros CP, Josiassen A (2010) Hotel efficiency: a bootstrapped metafrontier approach. Int J Hosp Manag 29(3):468–475

    Google Scholar 

  • Cao L, Li L, Wu Y, Zeng W (2020) Does industrial convergence promote regional metabolism? Evidence from China. J Clean Prod 273:123010

    Google Scholar 

  • Cao L, Li L, Wu Y (2021) How does population structure affect pollutant discharge in China? Evidence from an improved STIRPAT model. Environ Sci Pollut Res 28(3):2765–2778

    Google Scholar 

  • Caves DW, Christensen LR, Diewert WE (1982) The economic theory of index numbers and the measurement of input, output, and productivity. Econom J Econom Soc 50:1393–1414

    Google Scholar 

  • Chang V, Tovar B (2022) Efficiency drivers for the South Pacific West coast port terminals: a two-stage non-convex metafrontier dea approach. Oper Res Int J 22(3):2667–2701

    Google Scholar 

  • Chen Z, Song S (2008) Efficiency and technology gap in China’s agriculture: a regional meta-frontier analysis. China Econ Rev 19(2):287–296

    Google Scholar 

  • Chen C, Yan H (2011) Network DEA model for supply chain performance evaluation. Eur J Oper Res 213(1):147–155

    Google Scholar 

  • Chen Y, Cook WD, Zhu J (2010) Deriving the DEA frontier for two-stage processes. Eur J Oper Res 202(1):138–142

    Google Scholar 

  • Chen X, Liu X, Gong Z (2018) Extended DEA model under type-2 fuzzy environment: an application of rural poverty reduction in Hainan province. Kybernetes 48(5):1095–1133

    Google Scholar 

  • Chen K, Song Y, Pan J, Yang G (2020) Measuring destocking performance of the Chinese real estate industry: a DEA-Malmquist approach. Socioecon Plann Sci 69:100691

    Google Scholar 

  • Christopoulos A, Dokas I, Katsimardou S, Spyromitros E (2022) The Malmquist productivity measure for UK-listed firms in the aftermath of the global financial crisis. Oper Res Int J 22(2):1617–1634

    Google Scholar 

  • Dong M, Wang M, Ma R, Yang G (2020) Impact factors of targeted anti-poverty in Liupanshan contiguous impoverished areas—basing on three-stage DEA & Tobit models. Soft Science (in Chinese) 34(09):72–78

    Google Scholar 

  • Donnell OCJ, Rao DP, Battese GE (2008) Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empirical Econom 34(2):231–255

    Google Scholar 

  • Eguchi S, Takayabu H, Lin C (2021) Sources of inefficient power generation by coal-fired thermal power plants in China: a metafrontier DEA decomposition approach. Renew Sustain Energy Rev 138:110562

    Google Scholar 

  • Fan M, Shao S, Yang L (2015) Combining global Malmquist-Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: a case of Shanghai (China). Energy Policy 79:189–201

    Google Scholar 

  • Färe R, Grosskopf S (1992) Malmquist productivity indexes and Fisher ideal indexes. Econ J 102(410):158–160

    Google Scholar 

  • Fei R, Lin B (2016) Energy efficiency and production technology heterogeneity in China’s agricultural sector: a meta-frontier approach. Technol Forecast Soc Chang 109:25–34

    Google Scholar 

  • Fukuyama H, Tsionas M, Tan Y (2022) Dynamic network data envelopment analysis with a sequential structure and behavioural-causal analysis: application to the Chinese banking industry. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2022.09.028

    Article  Google Scholar 

  • Galanopoulos K, Karagiannis G, Koutroumanidis T (2004) Malmquist productivity index estimates for European agriculture in the 1990s. Oper Res Int Journal 4(1):73–91

    Google Scholar 

  • Geylani PC, Kapelko M, Stefanou SE (2021) Dynamic productivity change differences between global and non-global firms: a firm-level application to the US food and beverage industries. Oper Res Int J 21(2):901–923

    Google Scholar 

  • Giacalone M, Nissi E, Cusatelli C (2020) Dynamic efficiency evaluation of Italian judicial system using DEA based Malmquist productivity indexes. Socioecon Plann Sci 72:100952

    Google Scholar 

  • Habibov NN, Fan L (2010) Comparing and contrasting poverty reduction performance of social welfare programs across jurisdictions in Canada using Data Envelopment Analysis (DEA): an exploratory study of the era of devolution. Eval Program Plann 33(4):457–467

    Google Scholar 

  • Hu X, Liu C (2016) Profitability performance assessment in the Australian construction industry: a global relational two-stage DEA method. Constr Manag Econ 34(3):147–159

    Google Scholar 

  • Jin Q, Kerstens K, Van de Woestyne I (2020) Metafrontier productivity indices: questioning the common convexification strategy. Eur J Oper Res 283(2):737–747

    Google Scholar 

  • Kao C, Hwang S (2014) Multi-period efficiency and Malmquist productivity index in two-stage production systems. Eur J Oper Res 232(3):512–521

    Google Scholar 

  • Kerstens K, Shen Z, Van de Woestyne I (2018) Comparing Luenberger and Luenberger-Hicks-Moorsteen productivity indicators: How well is total factor productivity approximated? Int J Prod Econ 195:311–318

    Google Scholar 

  • Kerstens K, Donnell OC, Van de Woestyne I (2019) Metatechnology frontier and convexity: a restatement. Eur J Oper Res 275(2):780–792

    Google Scholar 

  • Kerstens K, Sadeghi J, Van de Woestyne I, Zhang L (2022) Malmquist productivity indices and plant capacity utilisation: new proposals and empirical application. Ann Oper Res 315:221–250

    Google Scholar 

  • Kontolaimou A, Tsekouras K (2010) Are cooperatives the weakest link in European banking? A non-parametric metafrontier approach. J Bank Finance 34(8):1946–1957

    Google Scholar 

  • Li J, Wang Z, Cheng X, Shuai J, Shuai C, Liu J (2020) Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China. Energy 201:117631

    Google Scholar 

  • Lim S, Zhu J (2016) A note on two-stage network DEA model: frontier projection and duality. Eur J Oper Res 248(1):342–346

    Google Scholar 

  • Liu WB, Zhang DQ, Meng W, Li XX, Xu F (2011) A study of DEA models without explicit inputs. Omega 39(5):472–480

    Google Scholar 

  • Liu X, Liu H, Yang G, Pan J (2021) Productivity assessment of the real estate industry in China: a two-stage Malmquist productivity index. Int J Strateg Prop Manag 25(2):146–168

    Google Scholar 

  • Mulwa R, Emrouznejad A (2013) Measuring productive efficiency using Nerlovian profit efficiency indicator and metafrontier analysis. Oper Res Int J 13(2):271–287

    Google Scholar 

  • Oh D (2010) A global Malmquist-Luenberger productivity index. J Prod Anal 34(3):183–197

    Google Scholar 

  • Omrani H, Soltanzadeh E (2016) Dynamic DEA models with network structure: an application for Iranian airlines. J Air Transp Manag 57:52–61

    Google Scholar 

  • Pastor JT, Lovell CK (2005) A global Malmquist productivity index. Econ Lett 88(2):266–271

    Google Scholar 

  • Tan Y, Tsionas MG (2022) Modelling sustainability efficiency in banking. Int J Financ Econ 27(3):3754–3772

    Google Scholar 

  • Tone K, Tsutsui M (2010) Dynamic DEA: a slacks-based measure approach. Omega 38(3–4):145–156

    Google Scholar 

  • Tone K, Tsutsui M (2014) Dynamic DEA with network structure: a slacks-based measure approach. Omega 42(1):124–131

    Google Scholar 

  • Tone K, Kweh QL, Lu W, Ting IWK (2019) Modeling investments in the dynamic network performance of insurance companies. Omega 88:237–247

    Google Scholar 

  • Walheer B (2023) Meta-frontier and technology switchers: a nonparametric approach. Eur J Oper Res 305(1):463–474

    Google Scholar 

  • Wang K, Wei Y, Huang Z (2018) Environmental efficiency and abatement efficiency measurements of China’s thermal power industry: a data envelopment analysis based materials balance approach. Eur J Oper Res 269(1):35–50

    Google Scholar 

  • Wang Z, Li J, Liu J, Shuai C (2020) Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? —A DEA and GRA analysis of different projects in rural China. Energy Policy 137:111105

    Google Scholar 

  • Wu J, Zhu Q, Yin P, Song M (2017) Measuring energy and environmental performance for regions in China by using DEA-based Malmquist indices. Oper Res Int J 17(3):715–735

    Google Scholar 

  • Wu Y, Ke Y, Zhang T, Liu F, Wang J (2018) Performance efficiency assessment of photovoltaic poverty alleviation projects in China: a three-phase data envelopment analysis model. Energy 159:599–610

    Google Scholar 

  • Yang L, Zhang X (2018) Assessing regional eco-efficiency from the perspective of resource, environmental and economic performance in China: a bootstrapping approach in global data envelopment analysis. J Clean Prod 173:100–111

    Google Scholar 

  • Yang G, Shen W, Zhang D, Liu W (2014) Extended utility and DEA models without explicit input. J Oper Res Soc 65(8):1212–1220

    Google Scholar 

  • Yang G, Zhang T, Dong M (2020) Research on the efficiency of agricultural production and poverty reduction efficiency in rural China. J Quant Tech Econom 37(04):46–65

    Google Scholar 

  • Yang J, Wu Y, Wang J, Wan C, Wu Q (2021) A Study on the efficiency of tourism poverty alleviation in ethnic regions based on the staged DEA model. Front Psychol 12:642966

    Google Scholar 

  • Yang G, Wang Y, Chang H, Chen Q (2022) Evaluating anti-poverty policy efficiencies in China: meta-frontier analysis using the two-stage data envelopment analysis model. China Agric Econom Rev 14(2):416–442

    Google Scholar 

  • Yu M, Chen L (2020) Evaluation of efficiency and technological bias of tourist hotels by a meta-frontier DEA model. J Oper Res Soc 71(5):718–732

    Google Scholar 

  • Zameer H, Shahbaz M, Vo XV (2020) Reinforcing poverty alleviation efficiency through technological innovation, globalization, and financial development. Technol Forecast Soc Chang 161:120326

    Google Scholar 

  • Zeng X, Zhou Z, Liu Q, Xiao H, Liu W (2020) Environmental efficiency and abatement potential analysis with a two-stage DEA model incorporating the material balance principle. Comput Ind Eng 148:106647

    Google Scholar 

  • Zhong Y, He Z (2016) Measuring and space-time evolution of national- level poverty counties development efficiency in China based on DEA and ESDA. China Populat Resourc Environ 26(10):130–136

    Google Scholar 

  • Zhou Z, Lin L, Xiao H, Ma C, Wu S (2017) Stochastic network DEA models for two-stage systems under the centralized control organization mechanism. Comput Ind Eng 110:404–412

    Google Scholar 

  • Zhou Z, Liu C, Zeng X, Jiang Y, Liu W (2018) Carbon emission performance evaluation and allocation in Chinese cities. J Clean Prod 172:1254–1272

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Social Science Foundation of China (Nos. 18AJY003 and 20STA058), National Natural Science Foundation of China (No. 71801091), China Postdoctoral Science Foundation funded project (No. 2020M682577), and Hunan Key Laboratory of Macroeconomic Big Data Mining and its Application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanping Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The proof of Theorem 1

Proof

For the definition of \({P}_{NC}^{G}\), let \(P=\{{P}^{1}\cup {P}^{2}\cup ,\dots ,{\cup P}^{T}\}\), we then have.

$$P = \bigcup\limits_{{t = 1}}^{T} {\left\{ {\left( {X,W,Y} \right)\left| {\begin{array}{*{20}l} {\sum\limits_{{j = 1}}^{n} \lambda _{j}^{t} X_{j}^{t} \le X,\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{t} } W_{j}^{t} \ge W,} \hfill \\ {\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{t} } Z_{j}^{t} \ge \sum\limits_{{j = 1}}^{n} {\mu _{j}^{t} } Z_{j}^{t} ,\sum\limits_{{j = 1}}^{n} {\mu _{j}^{t} } Y_{j}^{t} \ge Y,} \hfill \\ {\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{t} } = 1,\sum\limits_{{j = 1}}^{n} {\mu _{j}^{t} } = 1,} \hfill \\ {\lambda _{j}^{t} ,\mu _{j}^{t} \ge 0,j = 1, \cdots ,n.} \hfill \\ \end{array} } \right.} \right\}}$$
(A1)

In this case, we only need to prove that \(P\) and \({P}_{NC}^{G}\) defined in Theorem 1 are equivalent. To this end, this paper illustrates this conclusion in two aspects.

(i) Suppose that an arbitrary given DMU \(\left(\widehat{X}, \widehat{W},\widehat{Y}\right)\in P\). This implies that there exists at least one time period \({t}_{0}\in \left\{1,\cdots ,T\right\}\) such that \(\left(\widehat{X}, \widehat{W},\widehat{Y}\right)\in {P}_{{t}_{0}}\) holds. Therefore, we obtain

$$\left\{\begin{array}{l}{\sum }_{j=1}^{n}{\lambda }_{j}^{{t}_{0}}{X}_{j}^{{t}_{0}}\le \widehat{X}, \sum_{j=1}^{n}{\lambda }_{j}^{{t}_{0}}{W}_{j}^{{t}_{0}}\ge \widehat{W},\\ \sum_{j=1}^{n}{\lambda }_{j}^{{t}_{0}}{Z}_{j}^{{t}_{0}}\ge \sum_{j=1}^{n}{\mu }_{j}^{{t}_{0}}{Z}_{j}^{{t}_{0}}, \sum_{j=1}^{n}{\mu }_{j}^{{t}_{0}}{Y}_{j}^{{t}_{0}}\ge \widehat{Y},\\ \sum_{j=1}^{n}{\lambda }_{j}^{{t}_{0}}=1, \sum_{j=1}^{n}{\mu }_{j}^{{t}_{0}}=1,\\ {\lambda }_{j}^{{t}_{0}}, {\mu }_{j}^{{t}_{0}}\ge 0,j=1,\cdots ,n.\end{array}\right.$$
(A2)

In addition, we make the following settings for \({P}_{NC}^{G}\) in Theorem 1: \({\kappa }^{t}\) is equal to 1 when \(t\) is equal to \({t}_{0}\), otherwise \({\kappa }^{t}\) is equal to 0. Then, \({P}_{NC}^{G}\) can be simplified as

$$P_{{NC}}^{G} = \left\{ {\left( {X,W,Y} \right)\left| {\begin{array}{*{20}l} {\sum\limits _{{j = 1}}^{n} \lambda _{j}^{{t_{0} }} X_{j}^{{t_{0} }} \le X,\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{{t_{0} }} } W_{j}^{{t_{0} }} \ge W,} \hfill \\ {\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{{t_{0} }} } Z_{j}^{{t_{0} }} \ge \sum\limits_{{j = 1}}^{n} {\mu _{j}^{{t_{0} }} } Z_{j}^{{t_{0} }} ,\sum\limits_{{j = 1}}^{n} {\mu _{j}^{{t_{0} }} } Y_{j}^{{t_{0} }} \ge Y,} \hfill \\ {\sum\limits_{{j = 1}}^{n} {\lambda _{j}^{{t_{0} }} } = 1,\sum\limits_{{j = 1}}^{n} {\mu _{j}^{{t_{0} }} } = 1,} \hfill \\ {\lambda _{j}^{{t_{0} }} ,\mu _{j}^{{t_{0} }} \ge 0,j = 1, \cdots ,n.} \hfill \\ \end{array} } \right.} \right\}$$
(A3)

The above results show that \(\left(\widehat{X}, \widehat{W},\widehat{Y}\right)\in {P}_{NC}^{G}\) holds, i.e., \(P\subset {P}_{NC}^{G}\) is true here.

(ii) For an arbitrary given DMU \(\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{X} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{W} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{Y} } \right)\)\(\in {P}_{NC}^{G}\), there exists \(t={\tau }_{0}\in \left\{1,\cdots ,T\right\}\) such that \({\kappa }^{{\tau }_{0}}\)=1 and satisfies \({ \kappa }^{t}=0\) when \(t\ne {\tau }_{0}\). It indicates that \(\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{X} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{W} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{Y} } \right)\)\(\in {P}_{{\tau }_{0}}\). We then obtain that \(\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{X} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{W} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{Y} } \right)\)\(\in P\) due to \({P}_{{\tau }_{0}}\subset P\). Then, the conclusion of \({P}_{NC}^{G}\subset P\) is proven.

Finally, incorporating the conclusions in (i) and (ii), it is shown that \(P={P}_{NC}^{G}\). Similarly, we prove that \({P}_{NC}^{G,1}\) and \({P}_{NC}^{G,2}\) can also be written as Sets (5) and (6), respectively. At this point, we conclude that Theorem 1 is true. □

The DEA models for comparison

When decision-makers do not consider the internal structure of the system and treats the PA system as a “black box”, the following traditional BCC model is obtained.

$${D}_{BCC}({X}_{0}^{\tau }, {{W}_{0}^{\tau },Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}{\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }{X}_{j}^{\tau }\le {X}_{0}^{\tau }-\theta {g}_{X}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{W}_{j}^{\tau }\ge {W}_{0}^{\tau }+\theta {g}_{W}^{\tau },\\ \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Y}_{j}^{\tau }\ge {Y}_{0}^{\tau }+\theta {g}_{Y}^{\tau },\\ {\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }=1,{\lambda }_{j}^{\tau }\ge 0, j=1,\cdots ,n.\end{array}\right.$$
(A4)

When decision-makers focus only on the production technology for a given time period in measuring the PA efficiency, the following local two-stage DEA models with different management mechanisms are obtained according to Sets (1)–(3).

$${D}^{\tau }({X}_{0}^{\tau }, {{W}_{0}^{\tau },Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}{\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }{X}_{j}^{\tau }\le {X}_{0}^{\tau }-\theta {g}_{X}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{W}_{j}^{\tau }\ge {W}_{0}^{\tau }+\theta {g}_{W}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{Z}_{j}^{\tau }\ge \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Z}_{j}^{\tau },\\ \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Y}_{j}^{\tau }\ge {Y}_{0}^{\tau }+\theta {g}_{Y}^{\tau },\\ {\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }=1, \sum_{j=1}^{n}{\mu }_{j}^{\tau }=1,\\ {\lambda }_{j}^{\tau },{\mu }_{j}^{\tau }\ge 0, j=1,\cdots ,n.\end{array}\right.$$
(A5)
$${D}^{\tau ,1}({X}_{0}^{\tau }, {W}_{0}^{\tau }, {Z}_{0}^{\tau },{Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}{\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }{X}_{j}^{\tau }\le {X}_{0}^{\tau }-\theta {g}_{X}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{W}_{j}^{\tau }\ge {W}_{0}^{\tau }+\theta {g}_{W}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{Z}_{j}^{\tau }\ge {Z}_{0}^{\tau }+\theta {g}_{Z}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{Z}_{j}^{\tau }\ge \sum_{j=1}^{n}{\mu }_{j}^{t}{Z}_{j}^{t},\\ \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Y}_{j}^{\tau }\ge {Y}_{0}^{\tau }, \\ {\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }=1, \sum_{j=1}^{n}{\mu }_{j}^{\tau }=1,\\ {\lambda }_{j}^{\tau }, {\mu }_{j}^{\tau }\ge 0, j=1,\cdots ,n.\end{array}\right.$$
(A6)
$${D}^{\tau ,2}({{X}_{0}^{\tau },{W}_{0}^{\tau },Z}_{0}^{\tau }, {Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}{\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }{X}_{j}^{\tau }\le {X}_{0}^{\tau },\\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{W}_{j}^{\tau }\ge {W}_{0}^{\tau }, \\ \sum_{j=1}^{n}{\lambda }_{j}^{\tau }{Z}_{j}^{\tau }\ge \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Z}_{j}^{\tau }, \\ {\sum }_{j=1}^{n}{\mu }_{j}^{\tau }{Z}_{j}^{\tau }\le {Z}_{0}^{\tau }-\theta {g}_{Z}^{\tau },\\ \sum_{j=1}^{n}{\mu }_{j}^{\tau }{Y}_{j}^{\tau }\ge {Y}_{0}^{\tau }+\theta {g}_{Y}^{\tau },\\ {\sum }_{j=1}^{n}{\lambda }_{j}^{\tau }=1, \sum_{j=1}^{n}{\mu }_{j}^{\tau }=1, \\ {\lambda }_{j}^{\tau },{\mu }_{j}^{\tau }\ge 0, j=1,\cdots ,n.\end{array}\right.$$
(A7)

In addition, we also allow that the convex global two-stage DEA models obtained from the convex combination of production technologies at different time periods. Similarly, the following models are constructed under different management mechanisms.

$${D}_{C}^{G}({X}_{0}^{\tau }, {{W}_{0}^{\tau },Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}\sum_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}{X}_{j}^{t}\le {X}_{0}^{\tau }-\theta {g}_{X}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{W}_{j}^{t}\ge {W}_{0}^{\tau }+\theta {g}_{W}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{Z}_{j}^{t}\ge \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Z}_{j}^{t},\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Y}_{j}^{t}\ge {Y}_{0}^{\tau }+\theta {g}_{Y}^{\tau },\\ {\sum }_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}=1, {\sum }_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}=1,\\ {\lambda }_{j}^{t},{\mu }_{j}^{t}\ge 0, t=1,\cdots ,T, j=1,\cdots ,n.\end{array}\right.$$
(A8)
$${D}_{C}^{G,1}({X}_{0}^{\tau }, {W}_{0}^{\tau }, {Z}_{0}^{\tau },{Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}\sum_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}{X}_{j}^{t}\le {X}_{0}^{\tau }-\theta {g}_{X}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{W}_{j}^{t}\ge {W}_{0}^{\tau }+\theta {g}_{W}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{Z}_{j}^{t}\ge {Z}_{0}^{\tau }+\theta {g}_{Z}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{Z}_{j}^{t}\ge \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Z}_{j}^{t},\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Y}_{j}^{t}\ge {Y}_{0}^{\tau }, \\ {\sum }_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}=1, {\sum }_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}=1,\\ {\lambda }_{j}^{t}, {\mu }_{j}^{t}\ge 0, t=1,\cdots ,T, j=1,\cdots ,n.\end{array}\right.$$
(A9)
$${D}_{C}^{G,2}({{X}_{0}^{\tau },{W}_{0}^{\tau },Z}_{0}^{\tau }, {Y}_{0}^{\tau })=\mathit{max}~\theta$$
$$s.t.\left\{\begin{array}{l}\sum_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}{X}_{j}^{t}\le {X}_{0}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{W}_{j}^{t}\ge {W}_{0}^{\tau }, \\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\lambda }_{j}^{t}{Z}_{j}^{t}\ge \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Z}_{j}^{t}, \\ \sum_{t=1}^{T}{\sum }_{j=1}^{n}{\mu }_{j}^{t}{Z}_{j}^{t}\le {Z}_{0}^{\tau }-\theta {g}_{Z}^{\tau },\\ \sum_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}{Y}_{j}^{t}\ge {Y}_{0}^{\tau }+\theta {g}_{Y}^{\tau },\\ {\sum }_{t=1}^{T}{\sum }_{j=1}^{n}{\lambda }_{j}^{t}=1, {\sum }_{t=1}^{T}\sum_{j=1}^{n}{\mu }_{j}^{t}=1, \\ {\lambda }_{j}^{t},{\mu }_{j}^{t}\ge 0, t=1,\cdots ,T, j=1,\cdots ,n.\end{array}\right.$$
(A10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Wang, N. & Wang, S. Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index. Oper Res Int J 23, 27 (2023). https://doi.org/10.1007/s12351-023-00771-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12351-023-00771-z

Keywords

Navigation