Skip to main content

Advertisement

Log in

MCDA approach for agricultural water management in the context of water–energy–land–food nexus

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

An integrated methodological framework, combining methods for environmental analysis with multi-criteria decision aid (MCDA), is proposed for decision problems related to the selection of agricultural water management measures in river basins. The proposed framework for environmental analysis combines the driving forces–pressures–state–impacts–responses model with the water–energy–land–food (WELF) nexus model to ensure structured, comprehensive and systemic thinking regarding the definition of the alternatives, the points of view and the criteria of the decision problem. The MCDA framework follows a multi-attribute value/utility theory approach for the estimation of marginal value functions for the selected criteria. This process is supported by the multicriteria interactive intelligence decision aiding system. The estimation of points of view and criteria weights is conducted following the newly-established weights assessment through prioritisation method (WAP), which is supported by the relevant WAP software. The MCDA framework includes strong interaction with a decision maker (DM) to elicit the required information for the above methods. Feedback loops and indicators for robustness analysis are applied, aiming at concluding to a robust value system, which models the preferences of the DM as close as possible. An additive value model is used to aggregate all the criteria and express the global value of all examined alternatives. The framework concludes to a recommended alternative for selection by the DM. The strengths and weaknesses of the proposed framework are identified. The framework is applied in a demonstration example from the Pinios river basin in Greece to showcase its use. The outcomes on the potential WELF nexus trade-offs and the identified sources of uncertainty are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Roy (1985)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arabi M, Frankenberger JR, Engel BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22:3042–3055

    Article  Google Scholar 

  • Arrow KJ (1963) Social choice and individual values. Yale University Press, New Haven (Nobel Prize)

    Google Scholar 

  • Arrow KJ (1967) Values and collective decision-making. In: Laslett P, Runciman WG (eds) Philosophy, politics and society. Basil Backwell, Oxford, pp 215–232

    Google Scholar 

  • Asharf A, Naz R, Wahab A, Ahmad B, Yasin M, Saleem M (2014) Assessment of landuse change and its impact on watershed hydrology using remote sensing and SWAT modeling techniques—a case of Rawal Watershed in Pakistan. Int J Agric Sci Technol 2:61–68

    Google Scholar 

  • Azarnivand A, Malekian A (2016) Analysis of flood risk management strategies based on a group decision making process via interval-valued intuitionistic fuzzy numbers. Water Resour Manag 30:1903–1921

    Article  Google Scholar 

  • Bana e Costa CA, Vansnick J-C (2008) A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur J Oper Res 187:1422–1428. https://doi.org/10.1016/j.ejor.2006.09.022

    Article  Google Scholar 

  • Bouyssou D (1989) Modelling inaccurate determination, uncertainty, imprecision using multiple criteria. In: Lockett AG, Islei G (eds) Improving decision making in organisations, vol 335. Lecture Notes in Economics and Mathematical Systems. Springe, Berlin

    Chapter  Google Scholar 

  • Brack W, Dulio V, Ågerstrand M, Allan I, Altenburger R, Brinkmann M, Bunke D, Burgess RM, Cousins I, Escher BI, Hernández FJ, Hewitt LM, Hilscherová K, Hollender J, Hollert H, Kase R, Klauer B, Lindim C, Herráez DL, Miège C, Munthe J, O’Toole S, Posthuma L, Rüdel H, Schäfer RB, Sengl M, Smedes F, van de Meent D, van den Brink PJ, van Gils J, van Wezel AP, Vethaak AD, Vermeirssen E, von der Ohe PC, Vrana B (2017) Towards the review of the European Union Water Framework Directive: recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Sci Total Environ 576:720–737. https://doi.org/10.1016/j.scitotenv.2016.10.104

    Article  Google Scholar 

  • Brans JP, Mareschal B, Vincke P (1984) PROMETHEE: a new family of outranking methods in multicriteria analysis. In: Brans JP (ed) Operational research, vol 84. North-Holland, Amsterdam, pp 477–490

    Google Scholar 

  • Brouwer C, Prins K, Kay M, Heibloem M (1990) Irrigation water management training manual no 5: irrigation methods. Land and Water Development Division, FAO, Rome

    Google Scholar 

  • Cegan JC, Filion AM, Keisler JM, Linkov I (2017) Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environ Syst Decis 37:123–133

    Article  Google Scholar 

  • Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Indic 46:138–148. https://doi.org/10.1016/j.ecolind.2014.06.011

    Article  Google Scholar 

  • Dantsis T, Douma C, Giourga C, Loumou A, Polychronaki EA (2010) A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol Indic 10:256–263

    Article  Google Scholar 

  • Dickson SE, Schuster-Wallace CJ, Newton JJ (2016) Water security assessment indicators: the rural context. Water Resour Manag 30:1567–1604

    Article  Google Scholar 

  • Dyer JS (2005) Multiattribute utility and value theories: MAUT—multiattribute utility theory. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 265–298

    Chapter  Google Scholar 

  • Ehrgott M, Wiecek MM (2005) Multiobjective programming. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 667–722

    Chapter  Google Scholar 

  • Evans JP, Steuer RE (1973) A revised simplex method for linear multiple objective programs. Math Program 5:54–72

    Article  Google Scholar 

  • Feuillette S, Levrel H, Boeuf B, Blanquart S, Gorin O, Monaco G, Penisson B, Robichon S (2016) The use of cost–benefit analysis in environmental policies: some issues raised by the Water Framework Directive implementation in France. Environ Sci Policy 57:79–85. https://doi.org/10.1016/j.envsci.2015.12.002

    Article  Google Scholar 

  • Figueira J, Roy B (2002) Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure. Eur J Oper Res 139:317–326

    Article  Google Scholar 

  • Fishburn PC (1970) Utility theory for decision making. Wiley, New York

    Book  Google Scholar 

  • Fishburn PC (1982) The foundation of expected utility. Reidel, Dordrecht

    Book  Google Scholar 

  • Gómez-Limón JA, Sanchez-Fernandez G (2010) Empirical evaluation of agricultural sustainability using composite indicators. Ecol Econ 69:1062–1075

    Article  Google Scholar 

  • Grigoroudis E, Siskos Y (2002) Preference disaggregation for measuring and analysing customer satisfaction: the MUSA method. Eur J Oper Res 143:148–170

    Article  Google Scholar 

  • Hajkowicz S, Collins K (2007) A review of multiple criteria analysis for water resource planning and management. Water Resour Manag 21:1553–1566. https://doi.org/10.1007/s11269-006-9112-5

    Article  Google Scholar 

  • Hayashi K (2000) Multicriteria analysis for agricultural resource management: a critical survey and future perspectives. Eur J Oper Res 122:486–500

    Article  Google Scholar 

  • Hoff H (2011) Understanding the nexus. Background paper for the Bonn2011 conference: the water, energy and food security nexus. Stockholm Environment Institute, Stockholm

  • Huang F, Li B (2010) Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part I: method development and validation. Agric Water Manag 97:1077–1092

    Article  Google Scholar 

  • Huang IB, Keisler J, Linkov I (2011) Multi-criteria decision analysis in environmental sciences: ten years of applications and trends. Sci Total Environ 409:3578–3594

    Article  Google Scholar 

  • Jacquet-Lagreze E, Siskos J (1982) Assessing a set of additive utility functions for multicriteria decision-making, the UTA method. Eur J Oper Res 10:151–164

    Article  Google Scholar 

  • Karabulut A, Egoh BN, Lanzanova D, Grizzetti B, Bidoglio G, Pagliero L, Bouraoui F, Aloe A, Reynaud A, Maes J, Vandecasteele I, Mubareka S (2016) Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube river basin. Ecosyst Serv 17:278–292

    Article  Google Scholar 

  • Keeney RL (1996) Value-focused thinking: a path to creative decision making, revised edition. Harvard University Press, Cambridge

    Google Scholar 

  • Keeney RL, Raiffa H (1976) Decisions with multiple objectives: preferences and value tradeoffs. Wiley, New York

    Google Scholar 

  • Kiker GA, Bridges TS, Varghese A, Seager PTP, Linkov I (2005) Application of multicriteria decision analysis in environmental decision making. Integr Environ Assess Manag 1:95–108. https://doi.org/10.1897/IEAM_2004a-015.1

    Article  Google Scholar 

  • Korhonen P, Wallenius J (1990) A multiple objective linear programming decision support system. Decis Support Syst 6:243–251

    Article  Google Scholar 

  • Leck H, Conway D, Bradshaw M, Rees J (2015) Tracing the water–energy–food nexus: description, theory and practice: tracing the water–energy–food nexus. Geogr Compass 9:445–460. https://doi.org/10.1111/gec3.12222

    Article  Google Scholar 

  • Liu Y, Engel BA, Flanagan DC, Gitau MW, McMillan SK, Chaubey I (2017) A review on effectiveness of best management practices in improving hydrology and water quality: needs and opportunities. Sci Total Environ 601–602:580–593

    Article  Google Scholar 

  • Makropoulos C, Mimikou M (2012) Innovative approaches to halt desertification in Pinios: piloting emerging technologies—a monograph, i-adapt project. National Technical University of Athens, Athens

    Google Scholar 

  • Mardani A, Zavadskas E, Govindan K, Amat Senin A, Jusoh A (2016) VIKOR technique: a systematic review of the state of the art literature on methodologies and applications. Sustainability 8:37. https://doi.org/10.3390/su8010037

    Article  Google Scholar 

  • Martel J-M, Matarazzo B (2005) Outranking methods: other outranking approaches. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 197–264

    Chapter  Google Scholar 

  • Martin-Nagle R, Howard E, Wiltse A, Duncan D (2012) Conference synopsis, Bonn 2011 conference: the water, energy and food security nexus—solutions for the green economy. OOSKAnews Inc, Bonn

    Google Scholar 

  • Marttunen M, Lienert J, Belton V (2017) Structuring problems for multi-criteria decision analysis in practice: a literature review of method combinations. EJOR 263:1–17. https://doi.org/10.1016/j.ejor.2017.04.041

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and water assessment tool: theoretical documentation—version 2009. Technical report no. 406, Texas Water Resources Institute, Texas A&M University System, Texas, USA

  • Panagopoulos Y, Makropoulos C, Kossida M, Mimikou M (2014) Optimal implementation of irrigation practices: cost-effective desertification action plan for the Pinios basin. J Water Resour Plan Manag 140:05014005

    Article  Google Scholar 

  • Pardalos PM, Siskos Y, Zopounidis C (1995) Editorial: advances in multicriteria analysis. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Pomerol J-C, Barba-Romero S (2000) Multicriterion decision in management: principles and practice, International Series in Operations Research & Management Science. Springer, New York

    Book  Google Scholar 

  • Psomas A, Dagalaki V, Panagopoulos Y, Konsta D, Mimikou M (2016) Sustainable agricultural water management in pinios river basin using remote sensing and hydrologic modeling. In: Procedia engineering, international conference on efficient & sustainable water systems management toward worth living development, 2nd EWaS 2016, vol 162, pp 277–283

  • Psomas A, Panagopoulos Y, Stefanidis K, Mimikou M (2017) Assessing future water supply and demand in a water-stressed catchment after environmental restrictions on abstractions. J Water Supply Res Technol Aqua 66:442–453

    Google Scholar 

  • Ringler C, Bhaduri A, Lawford R (2013) The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency? Curr Opin Environ Sustain 5:617–624

    Article  Google Scholar 

  • Roy B (1975) Vers une méthodologie générale d’aide à la décision. Revue METRA 14:459–497

    Google Scholar 

  • Roy B (1976) From optimization to multicriteria decision aid: three main operational attitudes. In: Thiriez H, Zionts S (eds) Multiple criteria decision making. Lecture notes in economics and mathematical systems (operations research), vol 130. Springer, Berlin, Heidelberg, pp 1–34

    Chapter  Google Scholar 

  • Roy B (1985) Méthodologie multicritere d’Aide à la Decision. Economica, Paris

    Google Scholar 

  • Roy B (1989) The outranking approach and the foundations of Electre methods. In: Bana e Costa C (ed) Readings on multiple criteria decision aid. Springer, Berlin, pp 155–183

    Google Scholar 

  • Roy B (1996) Multicriteria methodology for decision aiding, volume 12 of nonconvex optimization and its applications. Kluwe Academic Publisher, Dordrecht

    Book  Google Scholar 

  • Roy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200:629–638

    Article  Google Scholar 

  • Roy B, Bouyssou D (1993) Aide multicritere a la decision: Methodes et cas. Economica, Paris

    Google Scholar 

  • Roy RN, Finck A, Blair GJ, Tandon HLS (2006) FAO fertiliser and plant nutrition bulletin: plant nutrition for food security—a guide for integrated nutrient management. Land and Water Development Division, FAO, Rome

    Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill International, New York

    Google Scholar 

  • Saaty RW (1987) The analytic hierarchy process—what it is and how it is used. Math Model 9:161–176

    Article  Google Scholar 

  • Saaty TL, Sodenkamp M (2010) The analytic hierarchy and analytic network measurement processes: the measurement of intangibles. In: Pardalos PM, Zopounidis C (eds) Handbook of multicriteria analysis. Springer, New York, pp 91–166

    Chapter  Google Scholar 

  • Simos J (1990a) Evaluer l’impact sur l’environnement: Une approche originale par l’analyse multicritère et la négociation. Presses Polytechniques et Universitaires Romandes, Lausanne

    Google Scholar 

  • Simos J (1990b) L’évaluation environnementale: Un processus cognitif négocié. Thèse de doctorat,. DGF EPFL, Lausanne

  • Siskos Y (1980) Comment modeliser les preferences au moyen de fonctions d’utilite additives. RAIRO Rech Oper 14:53–82

    Article  Google Scholar 

  • Siskos J (1982) A way to deal with fuzzy preferences in multi-criteria decision problems. Eur J Oper Res 10:314–324

    Article  Google Scholar 

  • Siskos Y, Spyridakos A (1999) Intelligent multicriteria decision support: overview and perspectives. Eur J Oper Res 113:236–246

    Article  Google Scholar 

  • Siskos Y, Yannacopoulos D (1985) UTASTAR, an ordinal regression method for building additive value functions. Investig Oper 5:39–53

    Google Scholar 

  • Siskos Y, Spyridakos A, Yannacopoulos D (1999) Using artificial intelligence and visual techniques into preference disaggregation analysis: the MIIDAS system. Eur J Oper Res 113:281–299

    Article  Google Scholar 

  • Siskos Y, Grigoroudis E, Matsatsinis NF (2005) UTA Methods. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 297–344

    Chapter  Google Scholar 

  • Smeets E, Weterings R (1999) Environmental indicators: typology and overview. Technical report no 25. EEA, Copenhagen, Denmark

  • SSW, (Special Secretariat for Water) (2014) River basin management plan for the river basin district of Thessaly (GR 08). YPEKA, Athens

    Google Scholar 

  • Stefanidis K, Panagopoulos Y, Mimikou M (2018) Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Sci Total Environ 627:756–769. https://doi.org/10.1016/j.scitotenv.2018.01.282

    Article  Google Scholar 

  • Steuer RE (1985) Multiple criteria optimization and application. Wiley, New York

    Google Scholar 

  • Stewart T (1992) A critical survey on the status of multiple criteria decision making theory and practice. Omega 20:569–586

    Article  Google Scholar 

  • Stewart T (2005) Dealing with uncertainties in MCDA. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 445–470

    Chapter  Google Scholar 

  • Tanji KK, Kielen NC (2002) FAO irrigation and drainage paper no 61: agricultural drainage water management in arid and semi-arid areas. Land and Water Development Division, FAO, Rome

    Google Scholar 

  • Tsotsolas N, Spyridakos A, Siskos E, Salmon I (2016) Criteria weights assessment through prioritizations (WAP) using linear programming techniques and visualizations. Oper Res Int J. https://doi.org/10.1007/s12351-016-0280-7

    Article  Google Scholar 

  • Van Cauwenbergh N, Biala K, Bielders C, Brouckaert V, Franchois L, Garcia Cidad V, Hermy M, Mathijs E, Muys B, Reijnders J, Sauvenier X, Valckx J, Vanclooster M, Van der Veken B, Wauters E, Peeters A (2007) SAFE—a hierarchical framework for assessing the sustainability of agricultural systems. Agric Ecosyst Environ 120:229–242. https://doi.org/10.1016/j.agee.2006.09.006

    Article  Google Scholar 

  • Vanderpooten D (1990) The construction of prescriptions in outranking methods. In: Bana e Costa CA (ed) Reading in multiple criteria decision aid. Springer, Berlin, pp 184–215

    Chapter  Google Scholar 

  • Varady RG, Zuniga-Teran AA, Garfin GM, Martín F, Vicuña S (2016) Adaptive management and water security in a global context: definitions, concepts, and examples. Curr Opin Environ Sustain 21:70–77

    Article  Google Scholar 

  • Vincke P (2001) Preferences and numbers. In: Colorni A, Paruccini M, Roy B (eds) A-MCD-A—Aide Multi Critère à La Décision—multiple criteria decision aiding, Joint Research Center. The European Commission, Brussels, pp 343–354

    Google Scholar 

  • Vishnudas S, Savenije HHG, Van der Zaag P, Ajith Kumar CE, Anil KR (2008) Sustainability analysis of two participatory watershed projects in Kerala. Phys Chem Earth Parts A/B/C 33:1–12

    Article  Google Scholar 

  • Voulvoulis N, Arpon KD, Giakoumis T (2017) The EU water framework directive: from great expectations to problems with implementation. Sci Total Environ 575:358–366. https://doi.org/10.1016/j.scitotenv.2016.09.228

    Article  Google Scholar 

  • Waughray D (2011) Water security: the water–food–energy–climate nexus. The World Economic Forum Water Initiative. Island Press, Washington

    Google Scholar 

  • Yatsalo B, Gritsyuk S, Sullivan T, Trump B, Linkov I (2016) Multi-criteria risk management with the use of DecernsMCDA: methods and case studies. Environ Syst Decis 36:266–276. https://doi.org/10.1007/s10669-016-9598-1

    Article  Google Scholar 

  • Zeleny M (1974) Linear multiobjective programming. Springer, New York

    Book  Google Scholar 

  • Zimmerman HJ (1983) Using fuzzy sets in operational research. Eur J Oper Res 13:201–216

    Article  Google Scholar 

  • Zopounidis C, Pardalos PM (2010) Handbook of multicriteria analysis. Springer, Berling

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank the unknown reviewers for their useful comments on this publication. We would also like to thank Dr. Panagiotis Zervas and Vasiliki Dagalaki for their support with background data related to Pinios river basin modelling. Parts of this research were conducted under the project ‘Nomoteleia’ (Scientific Responsible: M. Mimikou). ‘Nomoteleia’ (http://nomoteleia.eu/) was partly funded by the General Secretariat of Research & Technology of the Greek Ministry of Education, Research and Religious Affairs (ARISTEIA I project).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Psomas or I. Vryzidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Psomas, A., Vryzidis, I., Spyridakos, A. et al. MCDA approach for agricultural water management in the context of water–energy–land–food nexus. Oper Res Int J 21, 689–723 (2021). https://doi.org/10.1007/s12351-018-0436-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-018-0436-8

Keywords

Navigation