Skip to main content

Advertisement

Log in

Optimal production-inventory policy for closed-loop supply chain with remanufacturing under random demand and return

  • Original Paper
  • Published:
Operational Research Aims and scope Submit manuscript

Abstract

This paper presents a centralized production-inventory model for an infinite planning horizon of a two-echelon closed-loop supply chain (CLSC) consisting a retailer, manufacturer, and remanufacturer. The demand at the retailer is satisfied through the new and remanufactured products received from the manufacturer and remanufacturer, respectively. The proposed model considers demand at the retailer and return at the remanufacturer as random. The manufacturer and remanufacturer produce the products at a finite rate, and they deliver to the retailer alternatively in multiple batches. An algorithm is developed to find the optimal-lot sizing and shipment policies of each entity of the CLSC by minimizing the expected joint total cost of the system. The results show that the CLSC is more profitable than the forward supply chain when the remanufacturing cost of the returned product is significantly low compared to the manufacturing cost of the new product, the demand variation at the retailer is low, and the fraction of demand returned is close to 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Atasu A, Guide VDR Jr, Van Wassenhove LN (2008) Product reuse economics in closed-loop supply chain research. Prod Oper Manag 17(5):483–496

    Google Scholar 

  • Chung SL, Wee HM, Yang PC (2008) Optimal policy for a closed-loop supply chain inventory system with remanufacturing. Math Comput Model 48(5–6):867–881

    Google Scholar 

  • Dobos I, Richter K (2004) An extended production/recycling model with stationary demand and return rates. Int J Prod Econ 90(3):311–323

    Google Scholar 

  • Dobos I, Richter K (2006) A production/recycling model with quality consideration. Int J Prod Econ 104(2):571–579

    Google Scholar 

  • El Saadany AMA, Jaber MY (2008) The EOQ repair and waste disposal model with switching costs. Comput Ind Eng 55(1):219–233

    Google Scholar 

  • El Saadany AMA, Jaber MY (2010) A production/remanufacturing inventory model with price and quality dependant return rate. Comput Ind Eng 58(3):352–362

    Google Scholar 

  • Giri BC, Sharma S (2015) Optimizing a closed-loop supply chain with manufacturing defects and quality dependent return rate. J Manuf Syst 35:92–111

    Google Scholar 

  • Giri BC, Sharma S (2016) Optimal production policy for a closed-loop hybrid system with uncertain demand and return under supply disruption. J Clean Prod 112:2015–2028

    Google Scholar 

  • Guide VDR Jr, Van Wassenhove LN (2009) The evolution of closed-loop supply chain research. Oper Res 57(1):10–18

    Google Scholar 

  • Guide VDR Jr, Teunter RH, Van Wassenhove LN (2003) Matching demand and supply to maximize products from remanufacturing. Manuf Serv Oper Manag 5(4):303–316

    Google Scholar 

  • Hariga M, As’ad R, Khan Z (2017) Manufacturing-remanufacturing policies for a centralized two stage supply chain under consignment stock partnership. Int J Prod Econ 183(1):362–374

    Google Scholar 

  • Hasanov P, Jaber MY, Zolfaghari S (2012) Production, remanufacturing and waste disposal models for the cases of pure and partial backordering. Appl Math Model 36(11):5249–5261

    Google Scholar 

  • Jaber MY, El Saadany AMA (2009) The production, remanufacture and waste disposal model with lost sales. Int J Prod Econ 120(1):115–124

    Google Scholar 

  • Jaber MY, El Saadany AMA (2011) An economic production and remanufacturing model with learning effects. Int J Prod Econ 131(1):115–127

    Google Scholar 

  • Jaber MY, Zanoni S, Zavanella LE (2014) A consignment stock coordination scheme for the production, remanufacturing and waste disposal problem. Int J Prod Res 52(1):50–65

    Google Scholar 

  • Jorjani S, Leu J, Scott C (2004) Model for the allocation of electronics components to reuse options. Int J Prod Res 42(6):1131–1145

    Google Scholar 

  • Koh SG, Hwang H, Sohn KI, Ko CS (2002) An optimal ordering and recovery policy for reusable items. Comput Ind Eng 43(1–2):59–73

    Google Scholar 

  • Konstantaras I, Skouri K (2010) Lot sizing for a single product recovery system with variable setup numbers. Eur J Oper Res 203(2):326–335

    Google Scholar 

  • Konstantaras I, Skouri K, Jaber MY (2010) Lot sizing for a recoverable product with inspection and sorting. Comput Ind Eng 58(3):452–462

    Google Scholar 

  • Korugan A, Gupta S (1998) A multi-echelon inventory system with returns. Comput Ind Eng 35(98):145–148

    Google Scholar 

  • Lee W (2005) A joint economic lot size model for raw material ordering, manufacturing setup, and finished goods delivering. Omega 33(2):163–174

    Google Scholar 

  • Lin HC (2015) Two-echelon stochastic inventory system with returns and partial backlogging. Int J Syst Sci 46(6):966–975

    Google Scholar 

  • Lund RT (1996) The remanufacturing industry: hidden giant. Boston University. http://www.bu.edu/reman/GetReports.htm. Accessed 25 June 2013

  • Mabini M, Pintelon L, Gelders L (1992) EOQ type formulations for controlling repairable inventories. Int J Prod Econ 28(1):21–33

    Google Scholar 

  • Maiti T, Giri BC (2017) Two-way product recovery in a closed-loop supply chain with variable markup under price and quality dependent demand. Int J Prod Econ 183(1):259–272

    Google Scholar 

  • Mawandiya BK, Jha JK, Thakkar J (2016) Two-echelon closed-loop supply chain deterministic inventory models in a batch production environment. Int J Sustain Eng 9(5):315–328

    Google Scholar 

  • Mawandiya BK, Jha JK, Thakkar J (2017) Production-inventory model for two-echelon closed-loop supply chain with finite manufacturing and remanufacturing rates. Int J Syst Sci Oper Logist 4(3):199–218

    Google Scholar 

  • Mitra S (2009) Analysis of a two-echelon inventory system with returns. Omega 37(1):106–115

    Google Scholar 

  • Mitra S (2012) Inventory management in a two-echelon closed-loop supply chain with correlated demands and returns. Comput Ind Eng 62(4):870–879

    Google Scholar 

  • Muckstadt JA, Isaac MH (1981) An analysis of single item inventory systems with returns. Nav Res Logist Q 28(2):237–254

    Google Scholar 

  • Nahmias S, Rivera H (1979) A deterministic model for a repairable item inventory system with a finite repair rate. Int J Prod Res 17(3):215–221

    Google Scholar 

  • Priyan S, Uthayakumar R (2015) Two-echelon multi-product multi-constraint product returns inventory model with permissible delay in payments and variable lead time. J Manuf Syst 36:244–262

    Google Scholar 

  • Ravindran A, Phillips DT, Solberg JJ (2010) Oper Res Princ Pract. Wiley, India

    Google Scholar 

  • Richter K (1996a) The EOQ repair and waste disposal model with variable setup numbers. Eur J Oper Res 95(2):313–324

    Google Scholar 

  • Richter K (1996b) The extended EOQ repair and waste disposal model. Int J Prod Econ 45(1–3):443–447

    Google Scholar 

  • Richter K (1997) Pure and mixed strategies for the EOQ repair and waste disposal problem. OR Spektrum 19(2):123–129

    Google Scholar 

  • Richter K, Dobos I (1999) Analysis of the EOQ repair and waste disposal problem with integer setup numbers. Int J Prod Econ 59(1–3):463–467

    Google Scholar 

  • Savaskan RC, Van Wassenhove LN (2006) Reverse channel design: the case of competing retailers. Manag Sci 52(1):1–14

    Google Scholar 

  • Schrady DA (1967) A deterministic inventory model for reparable items. Nav Res Logist 14(3):391–398

    Google Scholar 

  • Schulz T, Voigt G (2014) A flexibly structured lot sizing heuristic for a static remanufacturing system. Omega 44(1):21–31

    Google Scholar 

  • Shi J, Zhang G, Sha J (2011) Optimal production planning for a multi-product closed loop system with uncertain demand and return. Comput Oper Res 38(3):641–650

    Google Scholar 

  • Tai AH, Ching WK (2014) Optimal inventory policy for a Markovian two echelon system with returns and lateral transhipment. Int J Prod Econ 151:48–55

    Google Scholar 

  • Teng HM, Hsu PH, Chiu Y, Wee HM (2011) Optimal ordering decisions with returns and excess inventory. Appl Math Comput 217(22):9009–9018

    Google Scholar 

  • Teunter RH (2001) Economic ordering quantities for recoverable item inventory systems. Nav Res Logist 48(6):484–495

    Google Scholar 

  • Teunter R (2004) Lot-sizing for inventory systems with product recovery. Comput Ind Eng 46(3):431–441

    Google Scholar 

  • Tsai DM (2012) Optimal ordering and production policy for a recoverable item inventory system with learning effect. Int J Syst Sci 43(2):349–367

    Google Scholar 

  • Waters D (2003) Inventory control and management. Wiley, UK

    Google Scholar 

  • Yang PC, Wee HM, Chung SL, Ho PC (2010) Sequential and global optimization for a closed-loop deteriorating inventory supply chain. Math Comput Model 52(1–2):161–176

    Google Scholar 

  • Yuan KF, Gao Y (2010) Inventory decision-making models for a closed-loop supply chain system. Int J Prod Res 48(20):6155–6187

    Google Scholar 

  • Yuan KF, Ma SH, He B, Gao Y (2015) Inventory decision-making models for a closed-loop supply chain system with different decision-making structures. Int J Prod Res 53(1):183–219

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimal Kumar Mawandiya.

Appendices

Appendix 1: Derivation of the expected shortage of the returned product at the remanufacturer during each remanufacturing cycle

From Eq. (6), we have

$$B\left( {R_{r} } \right) = \int\limits_{0}^{{R_{r} - S_{r} }} {\left( {R_{r} - S_{r} - x_{r} } \right)f\left( {x_{r} } \right)dx_{r} }$$
(24)

The expression (24) can be rewritten as

$$\begin{aligned} B\left( {R_{r} } \right) & = \int\limits_{0}^{\infty } {\left( {R_{r} - S_{r} - x_{r} } \right)f\left( {x_{r} } \right)dx_{r} - } \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {R_{r} - S_{r} - x_{r} } \right)f\left( {x_{r} } \right)dx_{r} } \\ & = \left( {R_{r} - S_{r} } \right)\int\limits_{0}^{\infty } {f\left( {x_{r} } \right)dx_{r} - \int\limits_{0}^{\infty } {x_{r} f\left( {x_{r} } \right)dx_{r} + } } \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \left( {R_{r} - S_{r} } \right)} \right)f\left( {x_{r} } \right)dx_{r} } \\ \end{aligned}$$

Since xr ~ N(μrT, σ2rT), the above equation can be written as

$$B\left( {R_{r} } \right) = \left( {R_{r} - S_{r} - \mu rT} \right) + \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \left( {R_{r} - S_{r} } \right)} \right)f\left( {x_{r} } \right)dx_{r} } .$$
(25)

Let \(I = \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \left( {R_{r} - S_{r} } \right)} \right)f\left( {x_{r} } \right)dx_{r} }\), which can be written as

$$\begin{aligned} & I = \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \mu rT + \mu rT - \left( {R_{r} - S_{r} } \right)} \right)f\left( {x_{r} } \right)dx_{r} } ,\;{\text{therefore}} \\ & I = \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \mu rT} \right)f\left( {x_{r} } \right)dx_{r} } + \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {\mu rT - \left( {R_{r} - S_{r} } \right)} \right)f\left( {x_{r} } \right)dx_{r} } \\ \end{aligned}$$

On substituting \(f\left( {x_{r} } \right) = \frac{1}{{\sigma \sqrt {rT} \sqrt {2\pi } }}e^{{ - \frac{1}{2}\left( {\frac{{x_{r} - \mu rT}}{{\sigma \sqrt {rT} }}} \right)^{2} }}\), we get

$$I = \int\limits_{{R_{r} - S_{r} }}^{\infty } {\left( {x_{r} - \mu rT} \right)\frac{1}{{\sigma \sqrt {rT} \sqrt {2\pi } }}e^{{ - \frac{1}{2}\left( {\frac{{x_{r} - \mu rT}}{{\sigma \sqrt {rT} }}} \right)^{2} }} dx_{r} } + \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\int\limits_{{R_{r} - S_{r} }}^{\infty } {\frac{1}{{\sigma \sqrt {rT} \sqrt {2\pi } }}e^{{ - \frac{1}{2}\left( {\frac{{x_{r} - \mu rT}}{{\sigma \sqrt {rT} }}} \right)^{2} }} dx_{r} }$$

Let \(\frac{{x_{r} - \mu rT}}{{\sigma \sqrt {rT} }} = y\), therefore \(dx_{r} = \sigma \sqrt {rT} dy\)

Hence, \(I = \sigma \sqrt {rT} \int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {y\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy} + \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy}\).

Let \(I_{\text{I}} = \sigma \sqrt {rT} \int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {y\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy}\) and \(I_{\text{II}} = \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy}\).

Consider the expression \(I_{\text{I}} = \sigma \sqrt {rT} \int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {y\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy}\) and let \({{y^{2} } \mathord{\left/ {\vphantom {{y^{2} } 2}} \right. \kern-0pt} 2} = t\), therefore \(ydy = dt\).

Hence, \(I_{\text{I}} = \sigma \sqrt {rT} \int\limits_{{\frac{1}{2}\left( {\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}} \right)^{2} }}^{\infty } {\frac{1}{{\sqrt {2\pi } }}e^{ - t} dt} ,\) that is

$$I_{\text{I}} = \sigma \sqrt {rT} \frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}\left( {\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}} \right)^{2} }} .$$

Using \(S_{r} = k_{r} \sigma \sqrt {rT}\), and \(R_{r} = \mu rT - k_{r} \sigma \sqrt {rT}\) from Eq. (4), we have

$$\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }} = - 2k_{r} .$$

Let zr = 2kr, and so

$$\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }} = - z_{r}$$
(26)

Hence, \(I_{\text{I}} = \sigma \sqrt {rT} \frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}\left( { - z_{r} } \right)^{2} }}\) that is

$$I_{\text{I}} = \sigma \sqrt {rT} \phi ( - z_{r} ) = \sigma \sqrt {rT} \phi (z_{r} ),\quad {\text{as}}\;\phi ( - z_{r} ) = \phi (z_{r} ),$$

where \(\phi ( \cdot )\) is pdf of the standard normal distribution.

Next,

$$I_{\text{II}} = \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\int\limits_{{\frac{{R_{r} - S_{r} - \mu rT}}{{\sigma \sqrt {rT} }}}}^{\infty } {\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy} = \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\int\limits_{{ - z_{r} }}^{\infty } {\frac{1}{{\sqrt {2\pi } }}e^{{ - \frac{1}{2}y^{2} }} dy} .$$

Therefore,

$$I_{\text{II}} = \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\left[ {1 - \Phi ( - z_{r} )} \right] = \left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right]\Phi (z_{r} ),$$

where \(\Phi ( \cdot )\) is cdf of the standard normal distribution.

Now, from Eq. (30), \(\left[ {\mu rT - \left( {R_{r} - S_{r} } \right)} \right] = z_{r} \sigma \sqrt {rT}\), and so

$$I_{\text{II}} = z_{r} \sigma \sqrt {rT} \Phi (z_{r} ).$$

Therefore, from Eq. (29), \(B(R_{r} ) = \left( {R_{r} - S_{r} - \mu rT} \right) + \sigma \sqrt {rT} \left[ {\phi (z_{r} ) + z_{r} \Phi (z_{r} )} \right]\) and on substituting \(\left( {R_{r} - S_{r} - \mu rT} \right) = - z_{r} \sigma \sqrt {rT}\) from Eq. (30), we get

$$B(R_{r} ) = \sigma \sqrt {rT} \left[ {\phi (z_{r} ) - z_{r} + z_{r} \Phi (z_{r} )} \right].$$
(27)

Appendix 2: The first and second partial derivatives of EJTC(·)

$$\frac{\partial EJTC\left( \cdot \right)}{{\partial k_{m} }} = \frac{{\sigma \sqrt {L_{m} } }}{T}\left[ {\frac{{h_{1} }}{\mu }\left( {\left( {1 - \alpha r} \right)\mu T + \frac{{\alpha z_{r} \sigma \sqrt {rT} }}{2}} \right) - m\pi \left( {1 - \Phi \left( {k_{m} } \right)} \right)} \right],$$
(28)
$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m}^{2} }} = \frac{{m\pi \sigma \sqrt {L_{m} } \phi \left( {k_{m} } \right)}}{T} > 0,$$
(29)
$$\frac{\partial EJTC\left( \cdot \right)}{{\partial k_{l} }} = \frac{{\sigma \sqrt {L_{l} } }}{T}\left[ {\frac{{h_{1} }}{\mu }\left( {\alpha r\mu T - \frac{{\alpha z_{r} \sigma \sqrt {rT} }}{2}} \right) - l\pi \left( {1 - \Phi \left( {k_{l} } \right)} \right)} \right],$$
(30)
$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l}^{2} }} = \frac{{l\pi \sigma \sqrt {L_{l} } \phi \left( {k_{l} } \right)}}{T} > 0,$$
(31)
$$\frac{\partial EJTC\left( \cdot \right)}{{\partial z_{r} }} = \left\{ \begin{array}{l} \frac{{z_{r} \alpha^{2} \sigma^{2} rT}}{4\mu }\left\{ {h_{1} \left( {\frac{1}{m} + \frac{1}{l}} \right) + \frac{{h_{2} }}{m}\left[ {m\left( {1 - \frac{\mu }{P}} \right) - \left( {1 - \frac{2\mu }{P}} \right)} \right] + \frac{{h_{3} \mu }}{{\alpha P_{r} }} + \frac{{h_{4} }}{l}\left[ {l\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right]} \right\} \hfill \\ + \frac{{T\alpha \sigma \sqrt {rT} }}{2}\left\{ \begin{array}{l} h_{1} \left[ {\frac{{\left( {1 - \alpha r} \right)}}{m} + \frac{\alpha r}{l}} \right] + \frac{{h_{2} \left( {1 - \alpha r} \right)}}{m}\left[ {m\left( {1 - \frac{\mu }{P}} \right) - \left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + h_{3} \left( {\frac{1}{2\alpha } - \frac{r\mu }{{P_{r} }}} \right) - \frac{{h_{4} \alpha r}}{l}\left[ {l\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} \hfill \\ + \frac{{h_{1} \sigma \alpha \sigma \sqrt {rT} \left( {k_{m} \sqrt {L_{m} } - k_{l} \sqrt {L_{l} } } \right)}}{2\mu } - \alpha \sigma \sqrt {rT} \left[ {1 - \Phi \left( {z_{r} } \right)} \right]\pi_{r} \hfill \\ \end{array} \right\},$$
(32)
$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial z_{r}^{2} }} = \frac{{\alpha^{2} \sigma^{2} rT}}{4\mu }\left\{ \begin{array}{l} h_{1} \left( {\frac{1}{m} + \frac{1}{l}} \right) + h_{2} \left[ {\left( {1 - \frac{\mu }{P}} \right) - \frac{1}{m}\left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + \frac{{h_{3} \mu }}{{\alpha P_{r} }} + h_{4} \left[ {\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \frac{1}{l}\left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} + \alpha \sigma \sqrt {rT} \phi \left( {z_{r} } \right)\pi_{r} > 0,$$
(33)
$$\frac{\partial EJTC\left( \cdot \right)}{\partial m} = \frac{1}{T}\left[ \begin{array}{l} A_{1} - \frac{{h_{1} }}{{2\mu m^{2} }}\left( {\left( {1 - \alpha r} \right)\mu T + {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \hfill \\ + \frac{{h_{2} }}{{2\mu m^{2} }}\left( {1 - \frac{2\mu }{P}} \right)\left( {\left( {1 - \alpha r} \right)\mu T + {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \hfill \\ + \sigma \sqrt {L_{m} } \left[ {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right]\pi \hfill \\ \end{array} \right],$$
(34)
$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial m^{2} }} = \frac{1}{T}\left[ {\frac{1}{{\mu m^{3} }}\left( {\left( {1 - \alpha r} \right)\mu T + {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \left( {h_{1} - h_{2} + h_{2} \frac{2\mu }{P}} \right)} \right] > 0,\quad \left( {{\text{as}}\;h_{1} > h_{2} } \right),$$
(35)
$$\frac{\partial EJTC\left( \cdot \right)}{\partial l} = \frac{1}{T}\left[ \begin{array}{l} A_{4} - \frac{{h_{1} }}{{2\mu l^{2} }}\left( {\alpha r\mu T - {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \hfill \\ + \frac{{h_{4} }}{{2\mu l^{2} }}\left( {1 - \frac{2\mu }{{P_{r} }}} \right)\left( {\alpha r\mu T - {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \hfill \\ + \pi \sigma \sqrt {L_{l} } \left[ {\phi \left( {k_{l} } \right) - k_{l} + k_{l} \Phi \left( {k_{l} } \right)} \right] \hfill \\ \end{array} \right],$$
(36)
$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial l^{2} }} = \frac{1}{T}\left[ {\frac{1}{{\mu l^{3} }}\left( {\alpha r\mu T - {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)^{2} \left( {h_{1} - h_{4} + h_{4} \frac{2\mu }{{P_{r} }}} \right)} \right] > 0,\quad \left( {{\text{as}}\;h_{1} > h_{4} } \right),$$
(37)
$$\frac{\partial EJTC\left( \cdot \right)}{\partial T} = \left\{ \begin{array}{l} \frac{\mu }{2}\left\{ \begin{array}{l} h_{1} \left( {\frac{{\left( {1 - \alpha r} \right)^{2} }}{m} + \frac{{\alpha^{2} r^{2} }}{l}} \right) + \left( {1 - \alpha r} \right)^{2} h_{2} \left[ {\left( {1 - \frac{\mu }{P}} \right) - \frac{1}{m}\left( {1 - \frac{2\mu }{P}} \right)} \right] + \hfill \\ rh_{3} \left( {1 + \frac{\alpha r\mu }{{P_{r} }}} \right) + \alpha^{2} r^{2} h_{4} \left[ {\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \frac{1}{l}\left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} \hfill \\ + \frac{{z_{r} \alpha \sigma \sqrt {rT} }}{4T}\left\{ \begin{array}{l} h_{1} \left( {\frac{{\left( {1 - \alpha r} \right)}}{m} - \frac{\alpha r}{l}} \right) + \left( {1 - \alpha r} \right)h_{2} \left[ {\left( {1 - \frac{\mu }{P}} \right) - \frac{1}{m}\left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + h_{3} \left( {\frac{1}{2\alpha } - \frac{r\mu }{{P_{r} }}} \right) - \alpha rh_{4} \left[ {\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \frac{1}{l}\left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} \hfill \\ - \frac{{\alpha \sigma \sqrt {rT} }}{{2T^{2} }}\left[ {\frac{{h_{1} z_{r} \sigma }}{2\mu }\left( {k_{m} \sqrt {L_{m} } - k_{l} \sqrt {L_{l} } } \right) + \left( {\phi \left( {z_{r} } \right) - z_{r} + z_{r} \Phi \left( {z_{r} } \right)} \right)\pi_{r} } \right] \hfill \\ - \frac{1}{{T^{2} }}\left[ {\left( {mA_{1} + A_{2} + A_{3} + lA_{4} } \right) + \left[ \begin{array}{l} m\sigma \sqrt {L_{m} } \left( {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right) \hfill \\ + l\sigma \sqrt {L_{l} } \left( {\phi \left( {k_{l} } \right) - k_{l} + k_{l} \Phi \left( {k_{l} } \right)} \right) \hfill \\ \end{array} \right]\pi } \right] \hfill \\ \end{array} \right\}$$
(38)

and

$$\frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial T^{2} }} = \left\{ \begin{array}{l} - \frac{{z_{r} \alpha \sigma \sqrt {rT} }}{{8T^{2} }}\left[ \begin{array}{l} h_{1} \left( {\frac{{\left( {1 - \alpha r} \right)}}{m} - \frac{\alpha r}{l}} \right) + \left( {1 - \alpha r} \right)h_{2} \left[ {\left( {1 - \frac{\mu }{P}} \right) - \frac{1}{m}\left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + h_{3} \left( {\frac{1}{2\alpha } - \frac{r\mu }{{P_{r} }}} \right) - \alpha rh_{4} \left[ {\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \frac{1}{l}\left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right] \hfill \\ + \frac{{3\alpha \sigma \sqrt {rT} }}{{4T^{3} }}\left[ {\frac{{h_{1} z_{r} \sigma }}{2\mu }\left( {k_{m} \sqrt {L_{m} } - k_{l} \sqrt {L_{l} } } \right) + \left( {\phi \left( {z_{r} } \right) - z_{r} + z_{r} \Phi \left( {z_{r} } \right)} \right)\pi_{r} } \right] \hfill \\ + \frac{2}{{T^{3} }}\left[ {\left( {mA_{1} + A_{2} + A_{3} + lA_{4} } \right) + \left[ \begin{array}{l} m\sigma \sqrt {L_{m} } \left( {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right) \hfill \\ + l\sigma \sqrt {L_{l} } \left( {\phi \left( {k_{l} } \right) - k_{l} + k_{l} \Phi \left( {k_{l} } \right)} \right) \hfill \\ \end{array} \right]\pi } \right] \hfill \\ \end{array} \right\}.$$
(39)

Appendix 3: Test of convexity of the proposed model

To show the convexity of cost function in Eq. (11), all principal minors of the Hessian matrix of the cost function must be positive, i.e. \(H_{1} > 0\),\(H_{2} > 0\), \(H_{3} > 0\), \(H_{4} > 0\), \(H_{5} > 0\), \(H_{6} > 0\).

Here,

$$\begin{aligned} & H_{1} = \left| {\lambda_{11} } \right|,\quad H_{2} = \left| {\begin{array}{*{20}l} {\lambda_{11} } \hfill & {\quad \lambda_{12} } \hfill \\ {\lambda_{21} } \hfill & {\quad \lambda_{22} } \hfill \\ \end{array} } \right|,\quad H_{3} = \left| {\begin{array}{*{20}l} {\lambda_{11} } \hfill & {\quad \lambda_{12} } \hfill & {\quad \lambda_{13} } \hfill \\ {\lambda_{21} } \hfill & {\quad \lambda_{22} } \hfill & {\quad \lambda_{23} } \hfill \\ {\lambda_{31} } \hfill & {\quad \lambda_{32} } \hfill & {\quad \lambda_{33} } \hfill \\ \end{array} } \right|,\quad H_{4} = \left| {\begin{array}{*{20}l} {\lambda_{11} } \hfill & {\quad \lambda_{12} } \hfill & {\quad \lambda_{13} } \hfill & {\quad \lambda_{14} } \hfill \\ {\lambda_{21} } \hfill & {\quad \lambda_{22} } \hfill & {\quad \lambda_{23} } \hfill & {\quad \lambda_{24} } \hfill \\ {\lambda_{31} } \hfill & {\quad \lambda_{32} } \hfill & {\quad \lambda_{33} } \hfill & {\quad \lambda_{34} } \hfill \\ {\lambda_{41} } \hfill & {\quad \lambda_{42} } \hfill & {\quad \lambda_{43} } \hfill & {\quad \lambda_{44} } \hfill \\ \end{array} } \right| \\ & H_{5} = \left| {\begin{array}{*{20}l} {\lambda_{11} } \hfill & {\quad \lambda_{12} } \hfill & {\quad \lambda_{13} } \hfill & {\quad \lambda_{14} } \hfill & {\quad \lambda_{15} } \hfill \\ {\lambda_{21} } \hfill & {\quad \lambda_{22} } \hfill & {\quad \lambda_{23} } \hfill & {\quad \lambda_{24} } \hfill & {\quad \lambda_{25} } \hfill \\ {\lambda_{31} } \hfill & {\quad \lambda_{32} } \hfill & {\quad \lambda_{33} } \hfill & {\quad \lambda_{34} } \hfill & {\quad \lambda_{35} } \hfill \\ {\lambda_{41} } \hfill & {\quad \lambda_{42} } \hfill & {\quad \lambda_{43} } \hfill & {\quad \lambda_{44} } \hfill & {\quad \lambda_{45} } \hfill \\ {\lambda_{51} } \hfill & {\quad \lambda_{52} } \hfill & {\quad \lambda_{53} } \hfill & {\quad \lambda_{54} } \hfill & {\quad \lambda_{55} } \hfill \\ \end{array} } \right|\quad {\text{and}}\quad H_{6} = \left| {\begin{array}{*{20}l} {\lambda_{11} } \hfill & {\quad \lambda_{12} } \hfill & {\quad \lambda_{13} } \hfill & {\quad \lambda_{14} } \hfill & {\quad \lambda_{15} } \hfill & {\quad \lambda_{16} } \hfill \\ {\lambda_{21} } \hfill & {\quad \lambda_{22} } \hfill & {\quad \lambda_{23} } \hfill & {\quad \lambda_{24} } \hfill & {\quad \lambda_{25} } \hfill & {\quad \lambda_{26} } \hfill \\ {\lambda_{31} } \hfill & {\quad \lambda_{32} } \hfill & {\quad \lambda_{33} } \hfill & {\quad \lambda_{34} } \hfill & {\quad \lambda_{35} } \hfill & {\quad \lambda_{36} } \hfill \\ {\lambda_{41} } \hfill & {\quad \lambda_{42} } \hfill & {\quad \lambda_{43} } \hfill & {\quad \lambda_{44} } \hfill & {\quad \lambda_{45} } \hfill & {\quad \lambda_{46} } \hfill \\ {\lambda_{51} } \hfill & {\quad \lambda_{52} } \hfill & {\quad \lambda_{53} } \hfill & {\quad \lambda_{54} } \hfill & {\quad \lambda_{55} } \hfill & {\quad \lambda_{56} } \hfill \\ {\lambda_{61} } \hfill & {\quad \lambda_{62} } \hfill & {\quad \lambda_{63} } \hfill & {\quad \lambda_{64} } \hfill & {\quad \lambda_{65} } \hfill & {\quad \lambda_{66} } \hfill \\ \end{array} } \right|, \\ \end{aligned}$$

where \(H_{6} = \left| H \right|\); \(\left| \bullet \right|\) is the Hessian determinant and λij (i, j = 1, 2, 3, 4, 5, 6) are the second order partial derivatives of the cost function given by Eq. (11).

The second order partial derivatives of the cost function (11) are given below:

$$\lambda_{12} = \lambda_{21} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m} \partial k_{l} }} = 0,\quad \lambda_{13} = \lambda_{31} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m} \partial z_{r} }} = \frac{{\sigma \sqrt {L_{m} } }}{2T}\frac{{h_{1} }}{\mu }\frac{{\alpha \sigma \sqrt {rT} }}{2},$$
$$\lambda_{14} = \lambda_{41} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m} \partial m}} = - \frac{{\sigma \sqrt {L_{m} } \pi \left( {1 - \Phi \left( {k_{m} } \right)} \right)}}{T},\quad \lambda_{15} = \lambda_{51} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m} \partial l}} = 0,$$
$$\lambda_{16} = \lambda_{61} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m} \partial T}} = \frac{{\sigma \sqrt {L_{m} } }}{{T^{2} }}\left[ { - \frac{{h_{1} }}{\mu }\frac{{\alpha z_{r} \sigma \sqrt {rT} }}{4} + m\pi \left( {1 - \Phi \left( {k_{m} } \right)} \right)} \right],$$
$$\lambda_{23} = \lambda_{32} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l} \partial z_{r} }} = - \frac{{\sigma \sqrt {L_{l} } }}{T}\frac{{h_{1} }}{\mu }\frac{{\alpha \sigma \sqrt {rT} }}{2},\quad \lambda_{24} = \lambda_{42} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l} \partial m}} = 0,$$
$$\lambda_{25} = \lambda_{52} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l} \partial l}} = - \frac{{\sigma \sqrt {L_{l} } \pi \left( {1 - \Phi \left( {k_{l} } \right)} \right)}}{T},$$
$$\lambda_{26} = \lambda_{62} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l} \partial T}} = \frac{{\sigma \sqrt {L_{l} } }}{{T^{2} }}\left[ { - \frac{{h_{1} }}{\mu }\frac{{\alpha z_{r} \sigma \sqrt {rT} }}{4} + l\pi \left( {1 - \Phi \left( {k_{l} } \right)} \right)} \right],$$
$$\lambda_{34} = \lambda_{43} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial z_{r} \partial m}} = - \frac{{\left[ {h_{1} - \left( {1 - \frac{2\mu }{P}} \right)h_{2} } \right]\left[ {\frac{{z_{r} \alpha^{2} \sigma^{2} rT}}{2\mu } + \left( {1 - \alpha r} \right)T\alpha \sigma \sqrt {rT} } \right]}}{{2m^{2} }},$$
$$\lambda_{35} = \lambda_{53} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial z_{r} \partial l}} = - \frac{{\left[ {h_{1} - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)h_{4} } \right]\left( {\frac{{z_{r} \alpha^{2} \sigma^{2} rT}}{2\mu } + \alpha rT\alpha \sigma \sqrt {rT} } \right)}}{{2l^{2} }},$$
$$\lambda_{36} = \lambda_{63} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial z_{r} \partial T}} = \left\{ \begin{array}{l} \frac{{z_{r} \alpha^{2} \sigma^{2} r}}{4\mu }\left\{ \begin{array}{l} h_{1} \left( {\frac{1}{m} + \frac{1}{l}} \right) + \frac{{h_{2} }}{m}\left[ {m\left( {1 - \frac{\mu }{P}} \right) - \left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + \frac{{h_{3} \mu }}{{\alpha P_{r} }} + \frac{{h_{4} }}{l}\left[ {l\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} \hfill \\ \quad + \frac{{3\alpha \sigma \sqrt {rT} }}{4}\left\{ \begin{array}{l} h_{1} \left[ {\frac{{\left( {1 - \alpha r} \right)}}{m} + \frac{\alpha r}{l}} \right] + \frac{{h_{2} \left( {1 - \alpha r} \right)}}{m}\left[ {m\left( {1 - \frac{\mu }{P}} \right) - \left( {1 - \frac{2\mu }{P}} \right)} \right] \hfill \\ + h_{3} \left( {\frac{1}{2\alpha } - \frac{r\mu }{{P_{r} }}} \right) - \frac{{h_{4} \alpha r}}{l}\left[ {l\left( {1 - \frac{\mu }{{P_{r} }}} \right) - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)} \right] \hfill \\ \end{array} \right\} \hfill \\ \quad + \frac{1}{2T}\left[ {\frac{{h_{1} \sigma \alpha \sigma \sqrt {rT} \left( {k_{m} \sqrt {L_{m} } - k_{l} \sqrt {L_{l} } } \right)}}{2\mu } - \alpha \sigma \sqrt {rT} \left[ {1 - \Phi \left( {z_{r} } \right)} \right]\pi_{r} } \right] \hfill \\ \end{array} \right\},$$
$$\lambda_{45} = \lambda_{54} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{\partial m\partial l} = 0,$$
$$\begin{aligned} & \lambda_{46} = \lambda_{64} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{\partial m\partial T} = - \left\{ \begin{array}{l} \frac{1}{{T^{2} }}\left( {A_{1} + \pi \sigma \sqrt {L_{m} } \left[ {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right]} \right) \hfill \\ \quad + \frac{{\left( {1 - \alpha r} \right)\left[ {\left( {1 - \alpha r} \right)\mu T - {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right]\left[ {h_{1} - \left( {1 - \frac{2\mu }{P}} \right)h_{2} } \right]}}{{2m^{2} T}} \hfill \\ \end{array} \right\} \\ \quad {\text{and}}\;\lambda_{56} = \lambda_{65} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{\partial l\partial T} = - \left\{ \begin{array}{l} \frac{1}{{T^{2} }}\left( {A_{4} + \pi \sigma \sqrt {L_{l} } \left[ {\phi \left( {k_{l} } \right) - k_{l} + k_{l} \Phi \left( {k_{l} } \right)} \right]} \right) \hfill \\ \quad + \frac{\alpha r}{{2l^{2} T}}\left( {\alpha r\mu T - {{\alpha z_{r} \sigma \sqrt {rT} } \mathord{\left/ {\vphantom {{\alpha z_{r} \sigma \sqrt {rT} } 2}} \right. \kern-0pt} 2}} \right)\left[ {h_{1} - \left( {1 - \frac{2\mu }{{P_{r} }}} \right)h_{4} } \right] \hfill \\ \end{array} \right\}. \\ \end{aligned}$$

The remaining expressions of the second order partial derivatives, i.e. \(\lambda_{11} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{m}^{2} }}\), \(\lambda_{22} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial k_{l}^{2} }}\),\(\lambda_{33} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial z_{r}^{2} }}\), \(\lambda_{44} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial m^{2} }}\), \(\lambda_{55} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial l^{2} }}\), and \(\lambda_{66} = \frac{{\partial^{2} EJTC\left( \cdot \right)}}{{\partial T^{2} }}\) are mentioned in Appendix 2.

Appendix 4: Derivation of the FSC model

The expression of the EJTC per unit time of the FSC corresponding to the CLSC under study is obtained from Eq. (11) by setting the parameters associated with the returned and remanufactured products as zero (i.e. A3, h3, A4, h4, r, Ll, πr= 0). Thus, the expression for the EJTC per unit time of the FSC is given by

$$EJTC\left( {k_{m} ,m,T} \right) = \left\{ \begin{array}{l} \frac{{mA_{1} + A_{2} }}{T} + \left( {\frac{\mu T}{2m} + k_{m} \sigma \sqrt {L_{m} } } \right)h_{1} + \frac{\mu T}{2m}\left[ {\left( {m - 1} \right) - \left( {m - 2} \right)\frac{\mu }{P}} \right]h_{2} \hfill \\ \quad + \frac{m}{T}\sigma \sqrt {L_{m} } \left[ {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right]\pi \hfill \\ \end{array} \right\}.$$
(40)

To minimize the EJTC in Eq. (40), we take the first partial derivatives of the EJTC in Eq. (40) with respect to each decision variable while keeping other decision variables fixed, and setting them to zero, we obtain

$$\frac{{\partial EJTC\left( {k_{m} ,m,T} \right)}}{{\partial k_{m} }} = h_{1} \sigma \sqrt {L_{m} } - \frac{m}{T}\sigma \sqrt {L_{m} } \left[ {1 - \Phi \left( {k_{m} } \right)} \right]\pi ,$$
(41)
$$\frac{{\partial EJTC\left( {k_{m} ,m,T} \right)}}{\partial m} = \frac{{A_{1} }}{T} - \frac{{\mu Th_{1} }}{{2m^{2} }} + \frac{\mu T}{{2m^{2} }}\left( {1 - \frac{2\mu }{P}} \right)h_{2} + \frac{1}{T}\sigma \sqrt {L_{m} } \left[ {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right]\pi ,$$
(42)

and

$$\frac{{\partial EJTC\left( {k_{m} ,m,T} \right)}}{\partial T} = \left\{ \begin{array}{l} - \frac{{\left( {mA_{1} + A_{2} } \right)}}{{T^{2} }} + \frac{{\mu h_{1} }}{2m} + \frac{\mu }{2m}\left[ {\left( {m - 1} \right) - \left( {m - 2} \right)\frac{\mu }{P}} \right]h_{2} \hfill \\ \quad - \frac{m}{{T^{2} }}\sigma \sqrt {L_{m} } \left[ {\phi \left( {k_{m} } \right) - k_{m} + k_{m} \Phi \left( {k_{m} } \right)} \right]\pi \hfill \\ \end{array} \right\}.$$
(43)

The optimal value of the decision variables km, m (integer) and T, and the corresponding EJTC of the FSC are obtained from Eqs. (41), (42), (43), and (40) by using the iterative method similar to the CLSC model as explained in Sect. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mawandiya, B.K., Jha, J.K. & Thakkar, J.J. Optimal production-inventory policy for closed-loop supply chain with remanufacturing under random demand and return. Oper Res Int J 20, 1623–1664 (2020). https://doi.org/10.1007/s12351-018-0398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12351-018-0398-x

Keywords

Navigation