Skip to main content
Log in

Preclinical and clinical evaluation of a new method to assess cardiac insulin resistance using nuclear imaging

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Myocardial insulin resistance (IR) could be a predictive factor of cardiovascular events. This study aimed to introduce a new method using 123I-6-deoxy-6-iodo-d-glucose (6DIG), a pure tracer of glucose transport, for the assessment of IR using cardiac dynamic nuclear imaging.

Methods

The protocol evaluated first in rat-models consisted in two 6DIG injections and one of insulin associated with planar imaging and blood sampling. Compartmental modeling was used to analyze 6DIG kinetics in basal and insulin conditions and to obtain an index of IR. As a part of a translational approach, a clinical study was then performed in 5 healthy and 6 diabetic volunteers.

Results

In rodent models, the method revealed reproducible when performed twice at 7 days apart in the same animal. Rosiglitazone, an insulin-sensitizing drug, induced a significant increase of myocardial IR index in obese Zucker rats from 0.96 ± 0.18 to 2.26 ± 0.44 (P<.05) after 7 days of an oral treatment, and 6DIG IR indexes correlated with the gold standard IR index obtained through the hyperinsulinemic-euglycemic clamp (r=.68, P<.02). In human, a factorial analysis was applied on images to obtain vascular and myocardial kinetics before compartmental modeling. 1.5-fold to 2.2-fold decreases in mean cardiac IR indexes from healthy to diabetic volunteers were observed without reaching statistical significance.

Conclusions

These preclinical results demonstrate the reproducibility and sensibility of this novel imaging methodology. Although this first in-human study showed that this new method could be rapidly performed, larger studies need to be planned in order to confirm its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

6DIG:

6-Deoxy-6-iodo-d-glucose

IR:

Insulin resistance

T2D:

Type 2 diabetes

SPECT:

Single-photon emission computed tomography

ROI:

Region of interest

ID:

Injected dose

T 1/2 :

Radioactive half-life period

Bq:

Becquerel

HOMA:

Homeostatic model assessment of insulin resistance

QUICKI:

Quantitative insulin sensitivity check index

References

  1. Biddinger SB, Kahn RR. From mice to men: Insights into the insulin resistance syndromes. Annu Rev Physiol 2006;68:123-58.

    Article  CAS  PubMed  Google Scholar 

  2. Reaven GM. Historical perspective why syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab 2005;1:9-14.

    Article  CAS  PubMed  Google Scholar 

  3. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am Heart J 2005;149:20-32.

    Article  PubMed  Google Scholar 

  4. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005;365:1415-28.

    Article  CAS  PubMed  Google Scholar 

  5. Reaven GM. The metabolic syndrome: Is this diagnosis necessary? Am J Clin Nutr 2006;83:1237-47.

    Article  CAS  PubMed  Google Scholar 

  6. O’Neill S, O’Driscoll L. Metabolic syndrome: a closer look at the growing epidemic and its associated pathologies. Obes Rev 2015;16:1-12.

    Article  PubMed  Google Scholar 

  7. Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat Med 2006;12:62-6.

    Article  CAS  PubMed  Google Scholar 

  8. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766-81.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abdul-Ghani MA, Williams K, DeFronzo RA, Stern M. What is the best predictor of future type 2 diabetes? Diabetes Care 2007;30:1544-8.

    Article  PubMed  Google Scholar 

  10. Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: Unravelling the mechanism. Lancet 2010;375:2267-77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy: Clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol 2008;51:93-102.

    Article  CAS  PubMed  Google Scholar 

  12. Von Bibra H, Paulus W, St. John Sutton M. Cardiometabolic syndrome and increased risk of heart failure. Curr Heart Fail Rep 2016;13:219-29.

    Article  CAS  Google Scholar 

  13. DeFronzo A, Tobin JD, Andres R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am J Physiol Endocrinol Metab 1979;237:214-23.

    Article  Google Scholar 

  14. Radziuk J. Insulin sensitivity and its measurement: Structural commonalities among the methods. J Clin Endocrinol Metab 2000;85:4426-4433.

    CAS  PubMed  Google Scholar 

  15. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: Advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 2008;294:15-26.

    Article  CAS  Google Scholar 

  16. Singh B, Saxena A. Surrogate markers of insulin resistance: A review. World J Diabetes 2010;1:36-47.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bertoldo A, Peltoniemi P, Oikonen V, Knuuti J, Nuutila P, Cobelli C. Kinetic modeling of [18F]FDG in skeletal muscle by PET: A four-compartment five-rate-constant model. Am J Physiol Endocrinol Metab 2001;281:524-36.

    Article  Google Scholar 

  18. Hicks RJ, Herman WH, Kalff V, Molina E, Wolfe ER, Hutchins G, et al. Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol 1991;18:101-11.

    Article  CAS  PubMed  Google Scholar 

  19. Bertoldo A, Price J, Mathis C, Mason S, Holt D, Kelley C, et al. Quantitative assessment of glucose transport in human skeletal muscle: Dynamic positron emission tomography imaging of [O-methyl-11C]3-O-methyl-d-glucose. J Clin Endocrinol Metab 2005;90:1752-9.

    Article  CAS  PubMed  Google Scholar 

  20. Henry C, Koumanov F, Ghezzi C, Morin C, Mathieu JP, Vidal M, et al. [123I]-6-deoxy-6-iodo-d-glucose (6DIG), a potential tracer of glucose transport. Nucl Med Biol 1997;24:527-34.

    Article  CAS  PubMed  Google Scholar 

  21. Henry C, Tanti J-F, Grémeaux T, Morin C, Van Obberghen E, Comet M, et al. Characterization of 6-deoxy-6-iodo-d-glucose: A potential new tool to assess glucose transport. Nucl Med Biol 1997;24:99-104.

    Article  CAS  PubMed  Google Scholar 

  22. Perret P, Ghezzi C, Mathieu J-P, Morin C, Fagret D. Assessment of insulin sensitivity in vivo in control and diabetic mice with a radioactive tracer of glucose transport: [125I]-6-deoxy-6-iodo-d-glucose. Diabetes Metab Res Rev 2003;19:306-12.

    Article  CAS  PubMed  Google Scholar 

  23. Perret P, Slimani L, Briat A, Villemain D, Halimi S, Demongeot J, et al. Assessment of insulin resistance in fructose-fed rats with 125I-6-deoxy-6-iodo-d-glucose, a new tracer of glucose transport. Eur J Nucl Med Mol Imaging 2007;34:734-44.

    Article  CAS  PubMed  Google Scholar 

  24. Briat A, Slimani L, Perret P, Villemain D, Halimi S, Demongeot J, et al. In vivo assessment of cardiac insulin resistance by nuclear probes using an iodinated tracer of glucose transport. Eur J Nucl Med Mol Imaging 2007;34:1756-64.

    Article  CAS  PubMed  Google Scholar 

  25. Yue T-L, Bao W, Gu J-L, Cui J, Tao L, Ma XL, et al. Rosiglitazone treatment in Zucker diabetic fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes 2005;54:554-62.

    Article  CAS  PubMed  Google Scholar 

  26. Carson E, Cobelli C, Finkelstein L. The mathematical modelling of metabolic and endocrine system. Wiley John edition. New York: NY Press; 1983.

    Google Scholar 

  27. Calizzano A, Perret P, Desruet MD, Ahmadi M, Reboulet G, Djaileb L, et al. Safety, biodistribution, and dosimetry of the tracer of glucose transport 123I-6-deoxy-6-iodo-d-glucose (6DIG) in healthy and diabetic volunteers. Clin Nucl Med 2019;44:386-93.

    Article  PubMed  Google Scholar 

  28. Di Paola R, Bazin JP, Aubry F, Aurengo A, Cavailloles F, Herry JY, et al. Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci 1982;29:1310-21.

    Article  Google Scholar 

  29. Frouin F, Bazin JP, Di Paola M, Jolivet O, Di Paola R. FAMIS: A software package for functional feature extraction from biomedical multidimensional images. Comput Med Imaging Graph 1992;16:81-91.

    Article  CAS  PubMed  Google Scholar 

  30. Cobelli C, Carson ER, Finkelstein L, Leaning MS. Validation of simple and complex models in physiology and medicine. Am J Physiol Regul Integr Comp Physiol 1984;246:259-66.

    Article  Google Scholar 

  31. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 2018;14:140-62.

    Article  PubMed  Google Scholar 

  32. Uphues I, Kolter T, Goudt B, Eckel J. Failure of insulin-regulated recruitment of the glucose transporter GLUT4 in cardiac muscle of obese Zucker rats is associated with alterations of small-molecular-mass GTP-binding proteins. Biochem J 1995;311:161-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Crist GH, Xu B, Lanoue KF, Lang CH. Tissue-specific effects of in vivo adenosine receptor blockade on glucose uptake in Zucker rats. FASEB J 1998;12:1301-8.

    Article  CAS  PubMed  Google Scholar 

  34. Ledwig D, Müller H, Bischoff H, Eckel J. Early acarbose treatment ameliorates resistance of insulin-regulated GLUT4 trafficking in obese Zucker rats. Eur J Pharmacol 2002;445:141-8.

    Article  CAS  PubMed  Google Scholar 

  35. Golfman LS, Wilson CR, Sharma S, Burgmaier M, Young ME, Guthrie PH, et al. Activation of PPARγ enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am J Physiol Endocrinol Metab 2005;289:E328-36.

    Article  CAS  PubMed  Google Scholar 

  36. Pelzer T, Jazbutyte V, Arias-Loza PA, Segerer S, Lichtenwald M, Law MP, et al. Pioglitazone reverses down-regulation of cardiac PPARγ expression in Zucker diabetic fatty rats. Biochem Biophys Res Commun 2005;329:726-32.

    Article  CAS  PubMed  Google Scholar 

  37. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 1981;30:1000–7.

    Article  CAS  PubMed  Google Scholar 

  38. Clark PW, Jenkins AB, Kraegen EW. Pentobarbital reduces basal liver glucose output and its insulin suppression in rats. Am J Physiol Endocrinol Metab 1990;258:E701-7.

    Article  CAS  Google Scholar 

  39. Muniyappa R, Chen H, Muzumdar RH, Einstein FH, Yan X, Yue LQ, et al. Comparison between surrogate indexes of insulin sensitivity/resistance and hyperinsulinemic euglycemic clamp estimates in rats. Am J Physiol Endocrinol Metab 2009;297:1023-9.

    Article  CAS  Google Scholar 

  40. Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. Effects of glucagon-like-peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 2004;109:962-5.

    Article  CAS  PubMed  Google Scholar 

  41. Apaijai N, Chattipakorn SC, Chattipakorn N. Roles of obese-insulin resistance and anti-diabetic drugs on the heart with ischemia-reperfusion injury. Cardiovasc Drug Ther 2014;28:549-62.

    Article  CAS  Google Scholar 

  42. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson A, et al. New subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 2018;6:361-9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the staff of the Center of Clinical Investigation and the Nuclear Medicine department of CHU Grenoble Alpes.

Disclosures

Drs. Perret, Slimani, Barone-Rochette, Vollaire, Briat, Ahmadi, Henri, Desruet, Clerc, Broisat, Riou, Boucher, Frouin, Djaileb, Calizzano, Vanzetto, Fagret, and Ghezzi have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Perret.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

This work was partly funded by the ANR-06-TecSan-005-01-GLUCIMAG and “Infrastructure d’avenir en Biologie Santé” ANR-11-INBS-0006 Grants.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarizes the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

All editorial decisions for this article, including selection of reviewers and the final decision, were made by guest editor Stephan Nekolla, MD

Electronic supplementary material

Below is the link to the electronic supplementary material.

(pptx 227 kb)

(PDF 803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perret, P., Slimani, L., Barone-Rochette, G. et al. Preclinical and clinical evaluation of a new method to assess cardiac insulin resistance using nuclear imaging. J. Nucl. Cardiol. 29, 1419–1429 (2022). https://doi.org/10.1007/s12350-020-02520-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02520-7

Keywords

Navigation