Skip to main content
Log in

Regadenoson versus dipyridamole: Evaluation of stress myocardial blood flow response on a CZT-SPECT camera

  • ORIGINAL ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Regadenoson is a selective adenosine receptor agonist. It is currently unclear if the level of hyperemia differs between stress agents. We compared Myocardial Blood Flow (MBF) and Myocardial Flow Reserve (MFR) response on CZT-SPECT Myocardial Perfusion Imaging (MPI) to evaluate if dipyridamole and regadenoson could induce the same level of hyperemia.

Methods

228 patients with dynamic CZT-SPECT MPI were retrospectively analyzed (66 patients stressed with regadenoson and 162 with dipyridamole) in terms of MBF and MFR. To rule out confounding factors, two groups of 41 patients were matched for clinical characteristics in a sub-analysis, excluding high cardiovascular risk patients.

Results

Overall stress MBF was higher in regadenoson patients (1.71 ± 0.73 vs. 1.44 ± 0.55 mL·min−1·g−1 for regadenoson and dipyridamole, respectively, p < .05). However, when confounding factors were ruled out, stress MBF (1.57 ± 0.56 vs. 1.61 ± 0.62 mL·min−1·g−1 for dipyridamole and regadenoson, respectively, p = .88) and MFR (2.62 ± 0.77 vs. 2.46 ± 0.76 for dipyridamole and regadenoson, respectively, p = .40) were not different between regadenoson and dipyridamole.

Conclusions

Our results suggest that dipyridamole and regadenoson induce equivalent hyperemia in dynamic SPECT with similar stress MBF and MFR in comparable patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

LAD:

Left anterior descending artery

LA:

Left atrium

LCx:

Left circumflex

LVEF:

Left ventricular ejection fraction

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

RCA:

Right coronary artery

ROI:

Region of interest

References

  1. Johnson SG, Peters S. Advances in pharmacologic stress agents: Focus on regadenoson. J Nucl Med Technol 2010;38:163-71.

    PubMed  Google Scholar 

  2. Leaker BR, O’Connor B, Hansel TT, Barnes PJ, Meng L, Mathur VS, et al. Safety of regadenoson, an adenosine A2A receptor agonist for myocardial perfusion imaging, in mild asthma and moderate asthma patients: A randomized, double-blind, placebo-controlled trial. J Nucl Cardiol 2008;15:329-36.

    PubMed  Google Scholar 

  3. Page RL, Spurck P, Bainbridge JL, Michalek J, Quaife RA. Seizures associated with regadenoson: A case series. J Nucl Cardiol 2012;19:389-91.

    PubMed  Google Scholar 

  4. Druz RS. Current advances in vasodilator pharmacological stress perfusion imaging. Semin Nucl Med 2009;39:204-9.

    PubMed  Google Scholar 

  5. Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, et al. Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 2007;14:645-58.

    PubMed  Google Scholar 

  6. Mahmarian JJ, Cerqueira MD, Iskandrian AE, Bateman TM, Thomas GS, Hendel RC, et al. Regadenoson induces comparable left ventricular perfusion defects as adenosine: A quantitative analysis from the ADVANCE MPI 2 trial. JACC Cardiovasc Imaging 2009;2:959-68.

    PubMed  Google Scholar 

  7. Mahmarian JJ, Peterson LE, Xu J, Cerqueira MD, Iskandrian AE, Bateman TM, et al. Regadenoson provides perfusion results comparable to adenosine in heterogeneous patient populations: A quantitative analysis from the ADVANCE MPI trials. J Nucl Cardiol 2015;22:248-61.

    PubMed  Google Scholar 

  8. Cerqueira MD, Nguyen P, Staehr P, Underwood SR, Iskandrian AE, ADVANCE-MPI Trial Investigators. Effects of age, gender, obesity, and diabetes on the efficacy and safety of the selective A2A agonist regadenoson versus adenosine in myocardial perfusion imaging integrated ADVANCE-MPI trial results. JACC Cardiovasc Imaging 2008;1:307-16.

    PubMed  Google Scholar 

  9. Iqbal FM, Hage FG, Ahmed A, Dean PJ, Raslan S, Heo J, et al. Comparison of the prognostic value of normal regadenoson with normal adenosine myocardial perfusion imaging with propensity score matching. JACC Cardiovasc Imaging 2012;5:1014-21.

    PubMed  Google Scholar 

  10. Golzar Y, Doukky R. Regadenoson use in patients with chronic obstructive pulmonary disease: The state of current knowledge. Int J Chron Obstruct Pulmon Dis 2014;9:129-37.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hussain N, Chaudhry W, Ahlberg AW, Amara RS, Elfar A, Parker MW, et al. An assessment of the safety, hemodynamic response, and diagnostic accuracy of commonly used vasodilator stressors in patients with severe aortic stenosis. J Nucl Cardiol 2017;24:1200-13.

    PubMed  Google Scholar 

  12. Rai M, Ahlberg AW, Marwell J, Chaudhary W, Savino JA, Alter EL, et al. Safety of vasodilator stress myocardial perfusion imaging in patients with elevated cardiac biomarkers. J Nucl Cardiol 2017;24:724-34.

    PubMed  Google Scholar 

  13. Gupta A, Bajaj NS. Regadenoson use for stress myocardial perfusion imaging in advance chronic kidney disease and dialysis: Safe, effective, and efficient. J Nucl Cardiol 2018;25:150-2.

    PubMed  Google Scholar 

  14. American Society of Nuclear Cardiology. MedAxiom Nuclear Survey. J Nucl Cardiol 2014;21:5-88.

    Google Scholar 

  15. Lindner O, Burchert W, Buechel R, Schäfer WM, Im Namen der Arbeitsgemeinschaft „Kardiovaskuläre Nuklearmedizin“ der Deutschen Gesellschaft für Nuklearmedizin under AG20 „Nuklearkardiologische Diagnostik“ der Deutschen Gesellschaft für Kardiologie. Myocardial Perfusion SPECT 2018 in Germany: Results of the 8th Survey. Nukl Nucl Med 2019;58(6):425-33.

  16. Camici PG, Rimoldi OE. The clinical value of myocardial blood flow measurement. J Nucl Med 2009;50:1076.

    PubMed  Google Scholar 

  17. Nkoulou R, Fuchs TA, Pazhenkottil AP, Kuest SM, Ghadri JR, Stehli J, et al. Absolute myocardial blood flow and flow reserve assessed by gated SPECT with cadmium-zinc-telluride detectors using 99mTc-tetrofosmin: head-to-head comparison with 13 N-ammonia PET. J Nucl Med 2016;57:1887-92.

    CAS  PubMed  Google Scholar 

  18. Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti J-J, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: Head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079-90.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Giubbini R, Bertoli M, Durmo R, Bonacina M, Peli A, Faggiano I, et al. Comparison between N13NH3-PET and 99mTc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01939-x.

    Article  PubMed  Google Scholar 

  20. Acampa W, Zampella E, Assante R, Genova A, De Simini G, Mannarino T, et al. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with 82Rubidium PET imaging. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02129-w.

    Article  PubMed  Google Scholar 

  21. Goudarzi B, Fukushima K, Bravo P, Merrill J, Bengel FM. Comparison of the myocardial blood flow response to regadenoson and dipyridamole: A quantitative analysis in patients referred for clinical 82Rb myocardial perfusion PET. Eur J Nucl Med Mol Imaging 2011;38:1908-16.

    CAS  PubMed  Google Scholar 

  22. Bravo PE, Pozios I, Pinheiro A, Merrill J, Tsui BMW, Wahl RL, et al. Comparison and effectiveness of regadenoson versus dipyridamole on stress electrocardiographic changes during positron emission tomography evaluation of patients with hypertrophic cardiomyopathy. Am J Cardiol 2012;110:1033-9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Johnson NP, Gould KL. Regadenoson versus dipyridamole hyperemia for cardiac PET imaging. JACC Cardiovasc Imaging 2015;8:438-47.

    PubMed  Google Scholar 

  24. Verberne HJ, Acampa W, Anagnostopoulos C, Ballinger J, Bengel F, De Bondt P, et al. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision. Eur J Nucl Med Mol Imaging 2015;42:1929-40.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iskandrian AS, Heo J, Askenase A, Segal BL, Auerbach N. Dipyridamole cardiac imaging. Am Heart J 1988;115:432-43.

    CAS  PubMed  Google Scholar 

  26. lexiscan.pdf. [cited 2019 28]. https://www.astellas.us/docs/lexiscan.pdf.

  27. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74.

    PubMed  Google Scholar 

  28. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632-9.

    CAS  PubMed  Google Scholar 

  29. Yoshida K, Mullani N, Gould KL. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia. J Nucl Med 1996;37:1701-12.

    CAS  PubMed  Google Scholar 

  30. GraphPad Software, La Jolla California USA, www.graphpad.com.

  31. Trochu J-N, Zhao G, Post H, Xu X, Belardinelli L, Belloni FL, et al. Selective A2A adenosine receptor agonist as a coronary vasodilator in conscious dogs: potential for use in myocardial perfusion imaging. J Cardiovasc Pharmacol 2003;41:132-9.

    CAS  PubMed  Google Scholar 

  32. Hudgens S, Breeze J, Spalding J. Patient- and clinician-reported satisfaction with pharmacological stress agents for single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI). J Med Econ 2013;16:828-34.

    PubMed  Google Scholar 

  33. Zhao G, Linke A, Xu X, Ochoa M, Belloni F, Belardinelli L, et al. Comparative profile of vasodilation by CVT-3146, ael A2A receptor agonist, and adenosine in conscious dogs. J Pharmacol Exp Ther 2003;307:182-9.

    CAS  PubMed  Google Scholar 

  34. Buhr C, Gössl M, Erbel R, Eggebrecht H. Regadenoson in the detection of coronary artery disease. Vasc Health Risk Manag 2008;4:337-40.

    PubMed  PubMed Central  Google Scholar 

  35. Husain Z, Palani G, Cabrera R, Karthikeyan AS, Dhanalakota S, Pathmanathan S, et al. Hemodynamic response, arrhythmic risk, and overall safety of regadenoson as a pharmacologic stress agent for myocardial perfusion imaging in chronic obstructive pulmonary disease and bronchial asthma patients. Int J Cardiovasc Imaging 2012;28:1841-9.

    PubMed  Google Scholar 

  36. Bouallçgue FB, Nganoa C, Vigne J, Agostini D, Manrique A. Comparative performances of dipyridamole and regadenoson to detect myocardial ischemia using cardiac cadmium-zinc-telluride single-photon emission computerized tomography. J Clin Imaging Sci 2018;8:51.

    PubMed  Google Scholar 

  37. Assaad M, Berry A, Palanisamy J, Fenner J, Zughaib M. Differential effect of regadenoson versus dipyridamole on heart rate in patients with left bundle branch block: How does it affect the results of pharmacological nuclear stress testing? JRSM Cardiovasc Dis 2019;8:2048004019828257.

    PubMed  PubMed Central  Google Scholar 

  38. Hendel RC, Bateman TM, Cerqueira MD, Iskandrian AE, Leppo JA, Blackburn B, et al. Initial clinical experience with regadenoson, ael selective A2A agonist for pharmacologic stress single-photon emission computed tomography myocardial perfusion imaging. J Am Coll Cardiol 2005;46:2069-75.

    CAS  PubMed  Google Scholar 

  39. Cullom SJ, Case JA, Courter SA, McGhie AI, Bateman TM. Regadenoson pharmacologic rubidium-82 PET: A comparison of quantitative perfusion and function to dipyridamole. J Nucl Cardiol 2013;20:76-83.

    PubMed  Google Scholar 

  40. Vasu S, Bandettini WP, Hsu L-Y, Kellman P, Leung S, Mancini C, et al. Regadenoson and adenosine are equivalent vasodilators and are superior than dipyridamole: A study of first pass quantitative perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2013;24:85.

    Google Scholar 

  41. DiBella EVR, Fluckiger JU, Chen L, Kim TH, Pack NA, Matthews B, et al. The effect of obesity on regadenoson-induced myocardial hyperemia: A quantitative magnetic resonance imaging study. Int J Cardiovasc Imaging 2012;28:1435-44.

    PubMed  Google Scholar 

  42. Stolker JM, Lim MJ, Shavelle DM, Morris DL, Angiolillo DJ, Guzman LA, et al. Pooled comparison of regadenoson versus adenosine for measuring fractional flow reserve and coronary flow in the catheterization laboratory. Cardiovasc Revascularization Med Mol Interv 2015;16:266-71.

    Google Scholar 

  43. Lieu HD, Shryock JC, von Mering GO, Gordi T, Blackburn B, Olmsted AW, et al. Regadenoson, a selective A2A adenosine receptor agonist, causes dose-dependent increases in coronary blood flow velocity in humans. J Nucl Cardiol 2007;14:514-20.

    PubMed  Google Scholar 

  44. van Nunen LX, Lenders GD, Schampaert S, van’t Veer M, Wijnbergen I, Brueren GRG, et al. Single bolus intravenous regadenoson injection versus central venous infusion of adenosine for maximum coronary hyperaemia in fractional flow reserve measurement. EuroInterv J Eur Collab Work Group Interv Cardiol Eur Soc Cardiol 2015;11:905-13.

    Google Scholar 

  45. Potier L, Chequer R, Roussel R, Mohammedi K, Sismail S, Hartemann A, et al. Relationship between cardiac microvascular dysfunction measured with 82Rubidium-PET and albuminuria in patients with diabetes mellitus. Cardiovasc Diabetol 2018;17:11.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003;41:1387-93.

    PubMed  Google Scholar 

  47. Fang Y-HD, Liu Y-C, Ho K-C, Kuo F-C, Yang C-F, Yen T-C, et al. Single-scan rest/stress imaging with 99mTc-Sestamibi and cadmium zinc telluride-based SPECT for hyperemic flow quantification: A feasibility study evaluated with cardiac magnetic resonance imaging. PLoS ONE 2017;12:e0183402.

    PubMed  PubMed Central  Google Scholar 

  48. Zavadovsky KV, Mochula AV, Boshchenko AA, Vrublevsky AV, Baev AE, Krylov AL, et al. Absolute myocardial blood flows derived by dynamic CZT scan vs invasive fractional flow reserve: Correlation and accuracy. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01678-z.

    Article  PubMed  Google Scholar 

  49. Murthy VL, Lee BC, Sitek A, Naya M, Moody J, Polavarapu V, et al. Comparison and prognostic validation of multiple methods of quantification of myocardial blood flow with 82Rb PET. J Nucl Med 2014;55:1952-8.

    CAS  PubMed  Google Scholar 

  50. Bailly M, Thibault F, Courtehoux M, Metrard G, Ribeiro MJ. Impact of attenuation correction for CZT-SPECT measurement of myocardial blood flow. J Nucl Cardiol 2020. https://doi.org/10.1007/s12350-020-02075-7.

    Article  PubMed  Google Scholar 

  51. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med 2017;58:2013-9.

    CAS  PubMed  Google Scholar 

  52. Amer KA, Hurren JR, Edwin SB, Cohen G. Regadenoson versus dipyridamole: A comparison of the frequency of adverse events in patients undergoing myocardial perfusion imaging. Pharmacotherapy 2017;37:657-61.

    CAS  PubMed  Google Scholar 

  53. Chen W, Thomas J, Sadatsafavi M, FitzGerald JM. Risk of cardiovascular comorbidity in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Lancet Respir Med 2015;3:631-9.

    PubMed  Google Scholar 

Download references

Acknowledgments

We express our deepest gratitude to the cardiologists, the technical and radiopharmaceutical staff from CHR of Orleans and CHRU of Tours. This study is part of the French network of University Hospitals HUGO (‘Hôpitaux Universitaires du Grand Ouest’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Bailly MD.

Ethics declarations

Disclosure

Quentin Brana, Frédérique Thibault, Maxime Courtehoux, and Maria Joao Ribeiro have nothing to disclose. Gilles Metrard received honoraria and travel grants from General Electric Healthcare (from previous and other works). Denis Angoulvant received honoraria and travel grants from Astra Zeneca, MSD, Amgen, Servier, Sanofi, Bayer, BMS, Pfizer, Boehringer, artis, ando Nordisk (from previous and other works). Matthieu Bailly received honoraria and travel grants from General Electric Healthcare (from previous and other works).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brana, Q., Thibault, F., Courtehoux, M. et al. Regadenoson versus dipyridamole: Evaluation of stress myocardial blood flow response on a CZT-SPECT camera. J. Nucl. Cardiol. 29, 113–122 (2022). https://doi.org/10.1007/s12350-020-02271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-020-02271-5

Keywords

Navigation