Skip to main content
Log in

PET/CTA detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

PET/CTA was used to evaluate the effect of cholesterol crystal emboli (CCE) on muscle injury. Cholesterol crystals (CCs) released during plaque rupture travel downstream and lodge in muscle triggering inflammation and tissue injury.

Methods

Thigh muscles in three groups of rabbits (n = 22) were studied after intra-arterial injection of CCs, Group I (n = 10); polystyrene microspheres, Group II (n = 5); or normal saline, Group III (n = 7). After 48 hours, muscle inflammation and injury were measured by fluorodeoxy-glucose uptake using PET/CTA, serum tissue factor (TF), and creatinine phosphokinase (CPK). Macrophages were stained with RAM11 and CCs with Bodipy.

Results

SUVmax of thigh muscles was greater for Group I vs Group II and III (0.40 ± 0.16 vs 0.21 ± 0.11, P = .038 and 0.23 ± 0.06, P = .036). CPK levels rose significantly in Group I vs Group II and III (6.7 ± 6.0 vs 0.6 ± 0.4, P = .007 and 0.9 ± 0.4 mg·dL−1, P = .023). No arterial thrombosis was detected by CTA or histology of embolized arteries and TF did not rise significantly. There were extensive macrophage infiltrates surrounding muscle necrosis in Group I only.

Conclusions

Cholesterol crystal emboli triggered muscle inflammation and necrosis with an intact circulation. PET/CTA may help in the early detection of inflammation caused by CCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

CCs:

Cholesterol crystals

CCE:

Cholesterol crystal embolization

CPK:

Creatinine phosphokinase

PET/CTA:

Positron emission tomography and computed tomography angiography

LM:

Light microscopy

SUVmax:

Maximum standardized uptake values

MS:

Microspheres

SAL:

Saline

SEM:

Scanning electron microscopy

TF:

Serum tissue factor

References

  1. Kronzon I, Saric M. Cholesterol embolization syndrome. Circulation 2010;122:631-41.

    Article  PubMed  Google Scholar 

  2. Hollenshorst RW. Vascular status of patients who have cholesterol emboli in the retina. Am J Ophthalmol 1966;61:1159-65.

    Article  Google Scholar 

  3. Pascual M, Baumgartner JM, Bounameaux H. Stroke secondary to multiple spontaneous cholesterol emboli. Vasa 1991;20:74-7.

    CAS  PubMed  Google Scholar 

  4. Edwards MS, Corriere MA, Craven TE, Pan XM, Rapp JH, Pearce JD, et al. Atheroembolism during percutaneous renal artery revascularization. J Vasc Surg 2007;46:55-61.

    Article  PubMed  Google Scholar 

  5. Ghanem F, Vodnala D, Kalavakunta J, et al. Cholesterol crystal embolization following plaque rupture: A systemic disease with unusual features. J Biomed Res 2017;31:1-13.

    Google Scholar 

  6. Düwell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind F, et al. NLRP3 Inflamasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nature 2010;464:1357-62.

    Article  Google Scholar 

  7. Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006;440:237-41.

    Article  CAS  PubMed  Google Scholar 

  8. Geng Y-J, Phillips JE, Mason RP, Casscells SW. Cholesterol crystallization and macrophage apoptosis: Implication for atherosclerotic plaque instability and rupture. Biochem Pharm 2003;66:1485-92.

    Article  CAS  PubMed  Google Scholar 

  9. Kellner-Weibel G, Geng YJ, Rothblat GH. Cytotoxic cholesterol is generated by the hydrolysis of cytoplasmic cholesteryl ester and transported to the plasma membrane. Atherosclerosis 1999;146:309-19.

    Article  CAS  PubMed  Google Scholar 

  10. Gadeela N, Rubinstein J, Tamhane U, Huang R, Pathak DR, Hosein H-A, et al. The impact of circulating cholesterol crystals on vasomotor function: Implications for no-reflow phenomenon. J Am Coll Cardiol Interv 2011;4:521-9.

    Article  Google Scholar 

  11. Schwartz RS, Burke A, Farb A, Kaye D, Lesser JR, Henry TD, et al. Microemboli and microvascular obstruction in acute coronary thrombosis and sudden coronary death: Relation to epicardial plaque histopathology. J Am Coll Cardiol 2009;54:2167-73.

    Article  PubMed  Google Scholar 

  12. Janoudi A, Shamoun F, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 2016;37:1959-67.

    Article  CAS  PubMed  Google Scholar 

  13. Small D. Handbook of lipid research: The physical chemistry of lipids from alkanes to phospholipids. New York: Plenum Press; 1986.

    Google Scholar 

  14. Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 1997;17:1337-45.

    Article  CAS  PubMed  Google Scholar 

  15. Elizabeth A, Joseph C, Ittyachen MA. Growth and microtopographical studies of gel grown cholesterol crystals. Bull Matter Sci 2001;24:431-4.

    Article  CAS  Google Scholar 

  16. Lundberg B. Chemical composition and physical state of lipid deposits in Atherosclerosis. Atherosclerosis 1985;5:93-110.

    Article  Google Scholar 

  17. Aziz K, Berger K, Claycombe K, Huang R, Patel R, Abela GS. Non-invasive detection and localization of vulnerable plaque and arterial thrombosis using CTA/PET. Circulation 2008;117:2061-70.

    Article  PubMed  Google Scholar 

  18. Nasiri M, Janoudi A, Vanderberg A, Frame M, Flegler C, Flegler S, et al. Role of cholesterol crystals in atherosclerosis is unmasked by altering tissue preparation methods. Micros Res Technol 2015;78:969-74.

    Article  CAS  Google Scholar 

  19. Abela GS, Aziz K, Vedre A, Pathak D, Talbott JD, DeJong J. Effect of cholesterol crystals on plaques and intima in arteries of patients with acute coronary and cerebrovascular syndromes. Am J Cardiol 2009;103:959-68.

    Article  CAS  PubMed  Google Scholar 

  20. Rogers IS, Nasir K, Figueroa AL, Cury RC, Hoffmann U, Vermylen DA, et al. Feasibility of FDG imaging of the coronary arteries: Comparison between acute coronary syndrome and stable angina. J Am Coll Cardiol Imaging 2010;3:388-97.

    Article  Google Scholar 

  21. Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, et al. Plaque rupture and thrombosis is reduced by lowering cholesterol levels and crystallization with ezetimibe and is correlated with FDG-PET. Arterioscler Thromb Vasc Biol 2011;31:2007-14.

    Article  CAS  PubMed  Google Scholar 

  22. Rapp JH, Pan XM, Neumann M, Hong M, Hollenbeck K, Liu J. Microemboli composed of cholesterol crystals disrupt the blood-brain barrier and reduce cognition. Stroke 2008;39:2354-61.

    Article  CAS  PubMed  Google Scholar 

  23. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock L, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008;9:847-56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 Inflammasome sensing of asbestos and silica. Science 2008;320:674-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peeters PM, Perkins TN, Wouters EFM, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part. Fibre Toxicol 2013;10:3.

    Article  CAS  Google Scholar 

  26. Kiyotake R, Oh-Hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem 2015;290:25322-32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reininger AJ, Bernlochner I, Penz SM, Ravanat C, Smethurst P, Farndale RW, et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J Am Coll Cardiol 2010;55:1147-58.

    Article  CAS  PubMed  Google Scholar 

  28. Niccoli G, Scalone G, Crea F. Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management. Eur Heart J 2015;36:475-81.

    Article  PubMed  Google Scholar 

  29. Haygood TA, Fessel WJ, Strange DA. Atheromatous microembolism simulating polymyositis. J Am Med Assoc 1968;203:423-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ruiping Huang, Tracy Needham, Jeremy Williams, and Michelle Bengel for technical support. We also thank Melinda Frame, PhD, Center for Advanced Microscopy and Amy Porter, HT, QIHC, Investigative Histopathology Laboratory, Michigan State University, East Lansing, MI. Support was provided in part from Michigan State University and Edward W. Sparrow Hospital, Lansing, MI.

Disclosures

Dr. G.S. Abela is a recipient of grants from Merck and speaker for Amgen and Daiichi Sankyo. Dr. K. Berger is recipient of grants from Merck and Janssen. He is a speaker for Cardinal Health and Educational Symposia. For all remaining authors, conflict of interest is none declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Abela MD, MSc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pervaiz, M.H., Durga, S., Janoudi, A. et al. PET/CTA detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction. J. Nucl. Cardiol. 25, 433–440 (2018). https://doi.org/10.1007/s12350-017-0826-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-017-0826-y

Keywords

Navigation