Skip to main content
Log in

Myocardial blood flow: Putting it into clinical perspective

  • CME Article Review Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

In recent years, positron emission tomography/computed tomography (PET/CT)-determined myocardial perfusion in conjunction with myocardial blood flow (MBF) quantification in mL·g−1·min−1 has emerged from mere research application to initial clinical use in the detection and characterization of the coronary artery disease (CAD) process. The concurrent evaluation of MBF during vasomotor stress and at rest with the resulting myocardial flow reserve (MFR = MBF during stress/MBF at rest) expands the scope of conventional myocardial perfusion imaging not only to the detection of the most advanced and culprit CAD, as evidenced by the stress-related regional myocardial perfusion defect, but also to the less severe or intermediate stenosis in patients with multivessel CAD. Due to the non-specific nature of the hyperemic MBF and MFR, the interpretation of hyperemic flow increases with PET/CT necessitates an appropriate placement in the context with microvascular function, wall motion analysis, and eventually underlying coronary morphology in CAD patients. This review aims to provide a comprehensive overview of various diagnostic scenarios of PET/CT-determined myocardial perfusion and flow quantification in the detection and characterization of clinically manifest CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ACE-I:

Angiotensin-converting enzyme inhibitors

ARB:

Angiotensin II receptor blockers

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery disease

CT:

Computed tomography

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

PET:

Positron emission tomography

PTCA:

Percutaneous transluminal coronary angioplasty

SPECT:

Single-photon emission tomography

References

  1. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac pet imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 2010;3:623-40.

    Article  PubMed  Google Scholar 

  2. Bengel FM. Leaving relativity behind: Quantitative clinical perfusion imaging. J Am Coll Cardiol 2011;58:749-51.

    Article  PubMed  Google Scholar 

  3. Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative assessment of myocardial blood flow-clinical and research applications. Semin Nucl Med 2014;44:274-93.

    Article  PubMed  Google Scholar 

  4. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, et al. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol 2013;62:1639-53.

    Article  PubMed  Google Scholar 

  5. Danad I, Raijmakers PG, Harms HJ, Heymans MW, van Royen N, Lubberink M, et al. Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: A [15O]H2O pet study. Eur Heart J 2014;35:2094-105.

    Article  PubMed  Google Scholar 

  6. Danad I, Uusitalo V, Kero T, Saraste A, Raijmakers MD, Lammertsma AA, et al. Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease. J Am Coll Cardiol 2014;64:1464-75.

    Article  PubMed  Google Scholar 

  7. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M, et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005;45:1505-12.

    Article  PubMed  Google Scholar 

  8. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol 2009;54:150-6.

    Article  PubMed  Google Scholar 

  9. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-8.

    Article  PubMed  Google Scholar 

  10. Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 2012;126:1858-68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Dorbala S, et al. Coronary vascular dysfunction and prognosis in patients with chronic kidney disease. JACC Cardiovasc Imaging 2012;5:1025-34.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marinescu MA, Loffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging 2015;8:210-20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Recio-Mayoral A, Rimoldi OE, Camici PG, Kaski JC. Inflammation and microvascular dysfunction in cardiac syndrome x patients without conventional risk factors for coronary artery disease. JACC Cardiovasc Imaging 2013;6:660-7.

    Article  PubMed  Google Scholar 

  15. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, Duncker DJ, et al. Coronary vascular regulation, remodelling, and collateralization: Mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J 2015;45:3134-46.

    Article  Google Scholar 

  16. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: An update. Eur Heart J 2014;35:1101-11.

    Article  PubMed  Google Scholar 

  17. Schindler TH, Cadenas J, Facta AD, Li Y, Olschewski M, Sayre J, et al. Improvement in coronary endothelial function is independently associated with a slowed progression of coronary artery calcification in type 2 diabetes mellitus. Eur Heart J 2009;30:3064-73.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bravo PE, Tahari A, Pozios I, Luo HC, Bengel FM, Wahl RL, et al. Apparent left ventricular cavity dilatation during PET/CT in hypertrophic cardiomyopathy: Clinical predictors and potential mechanisms. J Nucl Cardiol 2015. doi:10.1007/s12350-015-0158-8.

    Google Scholar 

  19. Spoladore R, Maron MS, D’Amato R, Camici PG, Olivotto I. Pharmacological treatment options for hypertrophic cardiomyopathy: High time for evidence. Eur Heart J 2012;33:1724-33.

    Article  CAS  PubMed  Google Scholar 

  20. Quercioli A, Montecucco F, Pataky Z, Thomas A, Ambrosio G, Staub C, et al. Improvement in coronary circulatory function in morbidly obese individuals after gastric bypass-induced weight loss: Relation to alterations in endocannabinoids and adipocytokines. Eur Heart J 2013;34:2063-73.

    Article  PubMed  Google Scholar 

  21. Schindler TH, Campisi R, Dorsey D, Prior JO, Olschewski M, Sayre J, et al. Effect of hormone replacement therapy on vasomotor function of the coronary microcirculation in post-menopausal women with medically treated cardiovascular risk factors. Eur Heart J 2009;30:978-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bravo PE, Di Carli MF. Does clopidogrel affect the efficacy of myocardial perfusion imaging? J Nucl Cardiol 2015. doi:10.1007/s12350-015-0280-7.

    Google Scholar 

  23. Valenta I, Dilsizian V, Quercioli A, Ruddy TD, Schindler TH. Quantitative PET/CT measures of myocardial flow reserve and atherosclerosis for cardiac risk assessment and predicting adverse patient outcomes. Curr Cardiol Rep 2013;15:344.

    Article  PubMed  Google Scholar 

  24. Valenta I, Quercioli A, Schindler TH. Diagnostic value of pet-measured longitudinal flow gradient for the identification of coronary artery disease. JACC Cardiovasc Imaging 2014;7:387-96.

    Article  PubMed  Google Scholar 

  25. Naya M, Murthy VL, Taqueti VR, Foster CR, Klein J, Garber M, et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schindler TH. Positron-emitting myocardial blood flow tracers and clinical potential. Prog Cardiovasc Dis 2015;57:588-606.

    Article  PubMed  Google Scholar 

  27. Gould KL, Kirkeeide RL, Buchi M. Coronary flow reserve as a physiologic measure of stenosis severity. J Am Coll Cardiol. 1990;15:459-74.

    Article  CAS  PubMed  Google Scholar 

  28. Gould KL, Lipscomb K. Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol. 1974;34:48-55.

    Article  CAS  PubMed  Google Scholar 

  29. Gould KL, Lipscomb K, Calvert C. Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation. 1975;51:1085-94.

    Article  CAS  PubMed  Google Scholar 

  30. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol. 1974;33:87-94.

    Article  CAS  PubMed  Google Scholar 

  31. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med. 1994;330:1782-8.

    Article  CAS  PubMed  Google Scholar 

  32. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation. 1995;91:1944-51.

    Article  PubMed  Google Scholar 

  33. Krivokapich J, Czernin J, Schelbert HR. Dobutamine positron emission tomography: Absolute quantitation of rest and dobutamine myocardial blood flow and correlation with cardiac work and percent diameter stenosis in patients with and without coronary artery disease. J Am Coll Cardiol. 1996;28:565-72.

    Article  CAS  PubMed  Google Scholar 

  34. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, et al. Assessment of coronary artery disease severity by positron emission tomography. Comparison with quantitative arteriography in 193 patients. Circulation. 1989;79:825-35.

    Article  CAS  PubMed  Google Scholar 

  35. Seiler C, Stoller M, Pitt B, Meier P. The human coronary collateral circulation: Development and clinical importance. Eur Heart J 2013;34:2674-82.

    Article  CAS  PubMed  Google Scholar 

  36. Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the coronary collateral circulation on mortality: A meta-analysis. Eur Heart J 2012;33:614-21.

    Article  PubMed  Google Scholar 

  37. Sato A, Hiroe M, Tamura M, Ohigashi H, Nozato T, Hikita H, et al. Quantitative measures of coronary stenosis severity by 64-slice ct angiography and relation to physiologic significance of perfusion in nonobese patients: Comparison with stress myocardial perfusion imaging. J Nucl Med 2008;49:564-72.

    Article  PubMed  Google Scholar 

  38. Beanlands RS, Muzik O, Melon P, Sutor R, Sawada S, Muller D, et al. Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol. 1995;26:1465-75.

    Article  CAS  PubMed  Google Scholar 

  39. van de Hoef TP, Siebes M, Spaan JAE, Piek JJ. Fundamentals in clinical coronary physiology: Why coronary flow is more important than coronary pressure. Eur Heart J 2015. doi:10.1093/eurheartj/ehv235.

    PubMed Central  Google Scholar 

  40. Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, et al. Beneficial effect of recruitable collaterals: A 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 2007;116:975-83.

    Article  PubMed  Google Scholar 

  41. Seiler C, Engler R, Berner L, Stoller M, Meier P, Steck H, Traupe T. Prognostic relevance of coronary collateral function: Confounded or causal relationship? Heart 2013;99:1408-14.

    Article  PubMed  Google Scholar 

  42. Di Carli MF, Hachamovitch R. New technology for noninvasive evaluation of coronary artery disease. Circulation 2007;115:1464-80.

    Article  PubMed  Google Scholar 

  43. Schindler TH, Zhang XL, Vincenti G, Lerch R, Schelbert HR. Role of pet in the evaluation and understanding of coronary physiology. J Nucl Cardiol 2007;14:589-603.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baller D, Notohamiprodjo G, Gleichmann U, Holzinger J, Weise R, Lehmann J. Improvement in coronary flow reserve determined by positron emission tomography after 6 months of cholesterol-lowering therapy in patients with early stages of coronary atherosclerosis. Circulation. 1999;99:2871-5.

    Article  CAS  PubMed  Google Scholar 

  45. Mancini GB, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG, et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The trend (trial on reversing endothelial dysfunction) study. Circulation. 1996;94:258-65.

    Article  CAS  PubMed  Google Scholar 

  46. Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, et al. Optimal medical therapy with or without percutaneous coronary intervention to reduce ischemic burden: Results from the clinical outcomes utilizing revascularization and aggressive drug evaluation (COURAGE) trial nuclear substudy. Circulation 2008;117:1283-91.

    Article  PubMed  Google Scholar 

  47. Hajjiri MM, Leavitt MB, Zheng H, Spooner AE, Fischman AJ, Gewirtz H. Comparison of positron emission tomography measurement of adenosine-stimulated absolute myocardial blood flow versus relative myocardial tracer content for physiological assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imaging 2009;2:751-8.

    Article  PubMed  Google Scholar 

  48. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027-35.

    Article  CAS  PubMed  Google Scholar 

  49. Kern MJ. Coronary physiology revisited: Practical insights from the cardiac catheterization laboratory. Circulation 2000;101:1344-51.

    Article  CAS  PubMed  Google Scholar 

  50. Lim MJ, Kern MJ. Coronary pathophysiology in the cardiac catheterization laboratory. Curr Probl Cardiol 2006;31:493-550.

    Article  PubMed  Google Scholar 

  51. Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: A 82rb PET/CT study. J Nucl Med 2007;48:349-58.

    PubMed  Google Scholar 

  52. De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001;104:2401-6.

    Article  PubMed  Google Scholar 

  53. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 2000;101:1931-9.

    Article  CAS  PubMed  Google Scholar 

  54. Sdringola S, Loghin C, Boccalandro F, Gould KL. Mechanisms of progression and regression of coronary artery disease by pet related to treatment intensity and clinical events at long-term follow-up. J Nucl Med 2006;47:59-67.

    PubMed  Google Scholar 

  55. Schindler TH, Facta AD, Prior JO, Campisi R, Inubushi M, Kreissl MC, et al. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. Eur J Nucl Med Mol Imaging 2006;33:1140-9.

    Article  PubMed  Google Scholar 

  56. Schindler TH, Zhang XL, Vincenti G, Nkoulou R, Just H, Dahlbom M, et al. Diagnostic value of pet-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. J Nucl Cardiol 2007;14:688-97.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Valenta I, Quercioli A, Vincenti G, Nkoulou R, Dewarrat S, Rager O, et al. Structural epicardial disease and microvascular function are determinants of an abnormal longitudinal myocardial blood flow difference in cardiovascular risk individuals as determined with PET/CT. J Nucl Cardiol 2010;17:1023-33.

    Article  PubMed  Google Scholar 

  58. Sdringola S, Patel D, Gould KL. High prevalence of myocardial perfusion abnormalities on positron emission tomography in asymptomatic persons with a parent or sibling with coronary artery disease. Circulation 2001;103:496-501.

    Article  CAS  PubMed  Google Scholar 

  59. Schindler TH, Facta AD, Prior JO, Cadenas J, Zhang XL, Li Y, et al. Structural alterations of the coronary arterial wall are associated with myocardial flow heterogeneity in type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging 2009;36:219-29.

    Article  PubMed  Google Scholar 

  60. Chamuleau SA, Tio RA, de Cock CC, de Muinck ED, Pijls NH, van Eck-Smit BL, et al. Prognostic value of coronary blood flow velocity and myocardial perfusion in intermediate coronary narrowings and multivessel disease. J Am Coll Cardiol 2002;39:852-8.

    Article  PubMed  Google Scholar 

  61. Schindler TH, Dilsizian V. PET-determined hyperemic myocardial blood flow: Further progress to clinical application. J Am Coll Cardiol 2014;64:1476-8.

    Article  PubMed  Google Scholar 

  62. Schindler TH, Zhang XL, Prior JO, Cadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with (13)n-ammonia and pet. Eur J Nucl Med Mol Imaging 2007;34:1178-88.

    Article  PubMed  Google Scholar 

  63. Sawada S, Muzik O, Beanlands RS, Wolfe E, Hutchins GD, Schwaiger M. Interobserver and interstudy variability of myocardial blood flow and flow-reserve measurements with nitrogen 13 ammonia-labeled positron emission tomography. J Nucl Cardiol. 1995;2:413-22.

    Article  CAS  PubMed  Google Scholar 

  64. Ferrari M, Schnell B, Werner GS, Figulla HR. Safety of deferring angioplasty in patients with normal coronary flow velocity reserve. J Am Coll Cardiol. 1999;33:82-7.

    Article  CAS  PubMed  Google Scholar 

  65. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracciolo EA, Wolford T, et al. Clinical outcome of deferring angioplasty in patients with normal translesional pressure-flow velocity measurements. J Am Coll Cardiol. 1995;25:178-87.

    Article  CAS  PubMed  Google Scholar 

  66. Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion pet: Added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.

    Article  CAS  PubMed  Google Scholar 

  67. Ziadi MC, Dekemp RA, Williams K, Guo A, Renaud JM, Chow BJ, et al. Does quantification of myocardial flow reserve using rubidium-82 positron emission tomography facilitate detection of multivessel coronary artery disease? J Nucl Cardiol 2012;19:670-80.

    Article  PubMed  Google Scholar 

  68. Kern MJ, Donohue TJ, Aguirre FV, Bach RG, Caracciolo EA, Ofili E, et al. Assessment of angiographically intermediate coronary artery stenosis using the doppler flowire. Am J Cardiol. 1993;71:26D-33D.

    Article  CAS  PubMed  Google Scholar 

  69. Miller DD, Donohue TJ, Younis LT, Bach RG, Aguirre FV, Wittry MD, et al. Correlation of pharmacological 99mtc-sestamibi myocardial perfusion imaging with poststenotic coronary flow reserve in patients with angiographically intermediate coronary artery stenoses. Circulation. 1994;89:2150-60.

    Article  CAS  PubMed  Google Scholar 

  70. Joye JD, Schulman DS, Lasorda D, Farah T, Donohue BC, Reichek N. Intracoronary doppler guide wire versus stress single-photon emission computed tomographic thallium-201 imaging in assessment of intermediate coronary stenoses. J Am Coll Cardiol. 1994;24:940-7.

    Article  CAS  PubMed  Google Scholar 

  71. Deychak YA, Segal J, Reiner JS, Rohrbeck SC, Thompson MA, Lundergan CF, et al. Doppler guide wire flow-velocity indexes measured distal to coronary stenoses associated with reversible thallium perfusion defects. Am Heart J. 1995;129:219-27.

    Article  CAS  PubMed  Google Scholar 

  72. Heller LI, Cates C, Popma J, Deckelbaum LI, Joye JD, Dahlberg ST, et al. Intracoronary doppler assessment of moderate coronary artery disease: Comparison with 201TL imaging and coronary angiography. Facts study group. Circulation. 1997;96:484-90.

    Article  CAS  PubMed  Google Scholar 

  73. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol. 1989;14:639-52.

    Article  CAS  PubMed  Google Scholar 

  74. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res 2001;50:151-61.

    Article  CAS  PubMed  Google Scholar 

  75. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88:62-9.

    Article  CAS  PubMed  Google Scholar 

  76. Tamaki N, Yonekura Y, Senda M, Kureshi SA, Saji H, Kodama S, et al. Myocardial positron computed tomography with 13n-ammonia at rest and during exercise. Eur J Nucl Med. 1985;11:246-51.

    Article  CAS  PubMed  Google Scholar 

  77. Senneff MJ, Geltman EM, Bergmann SR. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med. 1991;32:2037-42.

    CAS  PubMed  Google Scholar 

  78. Krivokapich J, Smith GT, Huang SC, Hoffman EJ, Ratib O, Phelps ME, et al. 13N-ammonia myocardial imaging at rest and with exercise in normal volunteers. Quantification of absolute myocardial perfusion with dynamic positron emission tomography. Circulation. 1989;80:1328-37.

    Article  CAS  PubMed  Google Scholar 

  79. Schindler TH, Nitzsche EU, Munzel T, Olschewski M, Brink I, Jeserich M, et al. Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: Contrasting myocardial blood flow responses to short- and long-term vitamin c administration. J Am Coll Cardiol 2003;42:814-22.

    Article  PubMed  Google Scholar 

  80. Quercioli A, Pataky Z, Montecucco F, Carballo S, Thomas A, Staub C, et al. Coronary vasomotor control in obesity and morbid obesity: Contrasting flow responses with endocannabinoids, leptin, and inflammation. JACC Cardiovasc Imaging 2012;5:805-15.

    Article  PubMed  Google Scholar 

  81. Quercioli A, Pataky Z, Vincenti G, Makoundou V, Di Marzo V, Montecucco F, et al. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 2011;32:1369-78.

    Article  CAS  PubMed  Google Scholar 

  82. Motivala AA, Rose PA, Kim HM, Smith YR, Bartnik C, Brook RD, et al. Cardiovascular risk, obesity, and myocardial blood flow in postmenopausal women. J Nucl Cardiol 2008;15:510-7.

    Article  PubMed  Google Scholar 

  83. Duvernoy CS, Meyer C, Seifert-Klauss V, Dayanikli F, Matsunari I, Rattenhuber J, et al. Gender differences in myocardial blood flow dynamics: Lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33:463-70.

    Article  CAS  PubMed  Google Scholar 

  84. Uren NG, Camici PG, Melin JA, Bol A, de Bruyne B, Radvan J, et al. Effect of aging on myocardial perfusion reserve. J Nucl Med. 1995;36:2032-6.

    CAS  PubMed  Google Scholar 

  85. Duvernoy CS, Rattenhuber J, Seifert-Klauss V, Bengel F, Meyer C, Schwaiger M. Myocardial blood flow and flow reserve in response to short-term cyclical hormone replacement therapy in postmenopausal women. J Gend Specif Med 2001;4:21-7.

    CAS  PubMed  Google Scholar 

  86. Prior JO, Schindler TH, Facta AD, Hernandez-Pampaloni M, Campisi R, Dahlbom M, et al. Determinants of myocardial blood flow response to cold pressor testing and pharmacologic vasodilation in healthy humans. Eur J Nucl Med Mol Imaging 2007;34:20-7.

    Article  PubMed  Google Scholar 

  87. Campisi R, Nathan L, Pampaloni MH, Schoder H, Sayre JW, Chaudhuri G, et al. Noninvasive assessment of coronary microcirculatory function in postmenopausal women and effects of short-term and long-term estrogen administration. Circulation 2002;105:425-30.

    Article  CAS  PubMed  Google Scholar 

  88. Bacharach SL, Cuocolo A, Bonow RO. Arterial blood concentration curves by cardiac PET without arterial sampling or image reconstruction. Computers in Cardiology 1988. Washington: IEEE Computer Society Press; 1989.

    Google Scholar 

  89. Knuuti J, Saraste A. Advances in clinical application of quantitative myocardial perfusion imaging. J Nucl Cardiol 2012;19:643-6.

    Article  PubMed  Google Scholar 

  90. Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G, et al. Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 2013;61:1099-107.

    Article  PubMed  Google Scholar 

  91. Beller GA. Underestimation of coronary artery disease with spect perfusion imaging. J Nucl Cardiol 2008;15:151-3.

    Article  PubMed  Google Scholar 

  92. Lima RS, Watson DD, Goode AR, Siadaty MS, Ragosta M, Beller GA, et al. Incremental value of combined perfusion and function over perfusion alone by gated spect myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003;42:64-70.

    Article  PubMed  Google Scholar 

  93. Berman DS, Kang X, Slomka PJ, Gerlach J, de Yang L, Hayes SW, et al. Underestimation of extent of ischemia by gated spect myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521-8.

    Article  PubMed  Google Scholar 

  94. Dorbala S, Hachamovitch R, Curillova Z, Thomas D, Vangala D, Kwong RY, et al. Incremental prognostic value of gated rb-82 positron emission tomography myocardial perfusion imaging over clinical variables and rest lvef. JACC Cardiovasc Imaging 2009;2:846-54.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Heusch G. Cardioprotection: Chances and challenges of its translation to the clinic. Lancet 2013;381:166-75.

    Article  PubMed  Google Scholar 

  96. Heusch G, Botker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol 2015;65:177-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This article was supported by a departmental fund from Johns Hopkins University, Baltimore, Maryland (No. 175470), and a research grant from the Swiss National Science Foundation (No. 3200N0-122237).

Disclosure

There is no relationship between industry and financial associations from within the past 2 years that might pose a conflict of interest in connection with the submitted article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hellmut Schindler MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schindler, T.H. Myocardial blood flow: Putting it into clinical perspective. J. Nucl. Cardiol. 23, 1056–1071 (2016). https://doi.org/10.1007/s12350-015-0372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-015-0372-4

Keywords

Navigation