Skip to main content
Log in

Traveling Wave Solutions for Two Perturbed Nonlinear Wave Equations with Distributed Delay

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Traveling wave solutions are a class of invariant solutions which are critical for shallow water wave equations. In this paper, traveling wave solutions for two perturbed KP-MEW equations with a local delay convolution kernel are examined. The model equation is reduced to a planar near-Hamiltonian system via geometric singular perturbation theorem, and the qualitative properties of the corresponding unperturbed system are analyzed by using dynamical system approach. The persistence of the bounded traveling wave solutions for the perturbed KP-MEW equations with delay is investigated. By using a criterion for the monotonicity of ratio of two Abelian integrals and Melnikov’s method, the existence of kink (anti-kink) wave solutions and periodic wave solutions of the model equation are established. The result shows that the delayed KP-MEW equations with positive perturbation and the one with negative perturbation exhibit completely diverse dynamical properties. These new findings greatly enrich the understanding of dynamical properties of the traveling wave solutions of perturbed nonlinear wave equations with local delay convolution kernel. Numerical experiments further confirm and illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kadomtsev, B., Petviashvili, V.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970)

    Google Scholar 

  2. Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123, 83–151 (2009)

    MathSciNet  Google Scholar 

  3. Zaki, S.I.: Solitary wave interactions for the modified equal width equation. Comput. Phys. Commun. 126, 219–231 (2000)

    Google Scholar 

  4. Esen, A., Kutluay, S.: Solitary wave solutions of the modified equal width wave equation. Commun. Nonlinear Sci. Numer. Simul. 82, 1538–1546 (2008)

    MathSciNet  Google Scholar 

  5. Wazwaz, A.M.: The tanh method and the sine-cosine method for solving the KP-MEW equation. Int. J. Comput. Math. 82, 235–246 (2005)

    MathSciNet  Google Scholar 

  6. Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 78, 3620–3632 (2019)

    MathSciNet  Google Scholar 

  7. Li, J., Dai, H.: On the study of singular nonlinear traveling wave equation: dynamical system approach. Science Press, Beijing (2007)

    Google Scholar 

  8. Li, J.: Singular traveling wave equations: bifurcation and exact solutions. Science Press, Beijing (2013)

    Google Scholar 

  9. Mahmud, A., Tanriverdi, T., Muhamad, K.: Exact traveling wave solutions for (2+1)-dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods. Int. J. Math. Comp. Eng. 1, 11–24 (2023)

    Google Scholar 

  10. Han, M., Zhang, L., Wang, Y., et al.: The effects of the singular lines on the traveling wave solutions of modified dispersive water wave equations. Nonlinear Anal. Real. 47, 236–250 (2019)

    MathSciNet  Google Scholar 

  11. Zhang, L., Chen, L.Q., Huo, X.: The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation. Nonlinear Dyn. 72, 789–801 (2013)

    MathSciNet  Google Scholar 

  12. Younas, U., Seadawy, A.R., Younis, M., et al.: Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation. Int. J. Mod. Phys. B 34(30), 2050291–1-16 (2020)

    Google Scholar 

  13. Seadawy, A.R., Rizvi, S.T.R., Ahmad, S., et al.: Lump, lump-one stripe, multiwave and breather solutions for the Hunter-Saxton equation. Open Phys. 19, 1–10 (2021)

    Google Scholar 

  14. Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172–180 (2014)

    MathSciNet  Google Scholar 

  15. Rizvi, S.T.R., Seadawy, A.R., Ahmed, S., et al.: Study of multiple lump and rogue waves to the generalized unstable space time fractional nonlinear Schrödinger equation. Chaos Soliton. Fract. 151, 111251–1-14 (2021)

    Google Scholar 

  16. Jarad, F., Jhangeer, A., Awrejcewicz, J., Ahmed, S., et al.: Investigation of wave solutions and conservation laws of generalized Calogero-Bogoyavlenskii-Schiff equation by group theoretic method. Results Phys. 37, 105479–110 (2022)

    Google Scholar 

  17. Hamza Rafiq, M., Jhangeer, A., Raza, N.: Symmetry and complexity: A Lie symmetry approach to bifurcation, chaos, stability and travelling wave solutions of the (3+1)-dimensional Kadomtsev-Petviashvili equation. Phys. Scripta 98, 115239 (2023)

    Google Scholar 

  18. Kurkcu, H., Riaz, M.B., Imran, M., et al.: Lie analysis and nonlinear propagating waves of the (3+1)-dimensional generalized Boiti-Leon-Manna-Pempinelli equation. Alex. Eng. J. 80, 475–486 (2023)

    Google Scholar 

  19. Rafiq, M.H., Raza, N., Jhangeer, A.: Nonlinear dynamics of the generalized unstable nonlinear Schrödinger equation: a graphical perspective. Opt. Quant. Electron. 55(7), 628 (2023)

    Google Scholar 

  20. Chen, Y., Liu, Z.: The bifurcations of solitary and kink waves described by the Gardner equation. Discrete Cont. Dyn. S 9(6), 1629–1645 (2016)

    MathSciNet  Google Scholar 

  21. Zhang, L., Chen, G., Li, J.: Bifurcations and exact bounded solutions of some traveling wave systems determined by integrable nonlinear oscillators with q-degree damping. Int. J. Bifurc. Chaos 33(3), 2350039 (2023)

    MathSciNet  Google Scholar 

  22. Chen, A., Wen, S., Tang, S., et al.: Effects of quadratic singular curves in integrable equations. Stud. Appl. Math. 134(1), 24–61 (2015)

    MathSciNet  Google Scholar 

  23. Li, J., Qiao, Z.: Bifurcations and exact traveling wave solutions for a generalized Camassa-Holm equation. Int. J. Bifur. Chaos 23, 1350057–117 (2013)

    MathSciNet  Google Scholar 

  24. Yang, R., Kai, Y.: Dynamical properties, modulation instability analysis and chaotic behaviors to the nonlinear coupled Schrödinger equation in fiber Bragg gratings. Mod. Phys. Lett. B (2023). https://doi.org/10.1142/S0217984923502391

    Article  Google Scholar 

  25. Ali, F., Jhangeer, A., Muddassar, M., et al.: Solitonic, quasi-periodic, super nonlinear and chaotic behaviors of a dispersive extended nonlinear Schrödinger equation in an optical fiber. Results Phys. 31, 104921–117 (2021)

    Google Scholar 

  26. Sardar, M., Khajanchi, S., Ahmad, B.: A tumor-immune interaction model with the effect of impulse therapy. Commun. Nonlinear Sci. Numer. Simul. 126, 107430 (2023)

    MathSciNet  Google Scholar 

  27. Khajanchi, S., Nieto, J.J.: Spatiotemporal dynamics of a glioma immune interaction model. Sci. Rep. 11, 22385 (2021)

    Google Scholar 

  28. Sarkar, K., Khajanchi, S., Mali, P.C.: A Delayed Eco-Epidemiological Model with Weak Allee Effect and Disease in Prey. Int. J. Bifur. Chaos. 32(8), 2250122 (2022)

    MathSciNet  Google Scholar 

  29. Biswas, S., Ahmad, B., Khajanchi, S.: Exploring dynamical complexity of a cannibalistic eco-epidemiological model with multiple time delay. Math. Method Appl. Sci. 46(4), 4184–4211 (2023)

    MathSciNet  Google Scholar 

  30. Khajanchi, S.: The impact of immunotherapy on a glioma immune interaction model. Chaos Soliton. Fract. 152, 111346 (2021)

    MathSciNet  Google Scholar 

  31. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MathSciNet  Google Scholar 

  32. Jones, C.K.R.T.: Geometric singular perturbation theory. Dyn. Syst. 1609, 44–118 (1995)

    MathSciNet  Google Scholar 

  33. Han, M.: Bifurcation theory of limit cycles. Science press, Beijing (2013)

    Google Scholar 

  34. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer-Verlag, New York (2000)

    Google Scholar 

  35. Du, Z., Ren, Y., Lin, X.: Dynamics of solitary waves and periodic waves for a generalized KP-MEW-Burgers equation with damping. Commun. Pure Appl. Anal. 21, 1987–2003 (2022)

    MathSciNet  Google Scholar 

  36. Li, X., Du, Z., Ji, S.: Existence results of solitary wave solutions for a delayed Camassa-Holm-KP equation. Commun. Pur. Appl. Anal. 18(6), 3367–3387 (2019)

    MathSciNet  Google Scholar 

  37. Wang, J., Zhang, L., Li, J.: New solitary wave solutions of a generalized BBM equation with distributed delays. Nonlinear Dyn. 111, 4631–4643 (2023)

    Google Scholar 

  38. Zhao, Z.: Solitary waves of the generalized KdV equation with distributed delays. J. Math. Anal. Appl. 344, 32–41 (2008)

    MathSciNet  Google Scholar 

  39. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    MathSciNet  Google Scholar 

  40. Zhang, L., Wang, J., Shchepakina, E., Sobolev, V.: New type of solitary wave solution with coexisting crest and trough for a perturbed wave equation. Nonlinear Dyn. 106(4), 3479–3493 (2021)

    Google Scholar 

  41. Sun, X., Huang, W., Cai, J.: Coexistence of the solitary and periodic waves in convecting shallow water fluid. Nonlinear Anal-Real 53, 103067 (2020)

    MathSciNet  Google Scholar 

  42. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Differ. Equ. 261, 5324–5349 (2016)

    MathSciNet  Google Scholar 

  43. Zhu, K., Wu, Y., Shen, J., et al.: New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn. 97, 2413–2423 (2019)

    Google Scholar 

  44. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Cont. Dyn. Sys. 40, 4689–4703 (2020)

    MathSciNet  Google Scholar 

  45. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach. J. Funct. Anal. 275(4), 988–1007 (2018)

    MathSciNet  Google Scholar 

  46. Wang, J., Yuen, M., Zhang, L.: Persistence of solitary wave solutions to a singularly perturbed generalized mKdV equation. Appl. Math. Lett. 124, 107668 (2022)

    MathSciNet  Google Scholar 

  47. Wei, J., Tian, L., Zhou, J., Zhen, Z.: Existence, uniqueness and asymptotic behavior of traveling wave fronts for a generalized Fisher equation with nonlocal delay. Chaos Solit. Fract. 26, 1111–1118 (2005)

    Google Scholar 

  48. Li, L., Yao, L.: Fault tolerant control of fuzzy stochastic distribution systems with packet dropout and time delay. IEEE T. Autom. Sci. Eng. (2023). https://doi.org/10.1109/TASE.2023.3266065

    Article  Google Scholar 

  49. Zhang, Z., Li, C.: Bifurcation Theory Foundation of Vector field. Higher Education Press, Beijing (1997). ((in chinese))

    Google Scholar 

  50. Li, C., Zhang, Z.: A criterion for determining the monotonicity of the ratio of two Abelian integrals. J. Differ. Equ. 124, 407–424 (1996)

    MathSciNet  Google Scholar 

  51. Zhou, Y., Liu, Q., Zhang, W.: Bounded traveling waves of the generalized Burgers-Fisher equation. Int. J. Bifurcat. Chaos. 23(3), 1350054 (2013)

    MathSciNet  Google Scholar 

  52. Zhang, H., Xia, Y., Ngbo, P.R.: Global existence and uniqueness of a periodic wave solution of the generalized Burgers-Fisher equation. Appl. Math. Lett. 121, 107353 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees’ valuable suggestions.

Funding

This work is supported by the National Natural Science Foundation of China (No. 12172199, 12011530062).

Author information

Authors and Affiliations

Authors

Contributions

JW wrote the original draft. LZ and XH performed formal analysis and validation. NM and CMK examined English spelling & grammar. All authors reviewed the manuscript.

Corresponding author

Correspondence to Lijun Zhang.

Ethics declarations

Conflict of interest

All authors have declared that no Conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhang, L., Huo, X. et al. Traveling Wave Solutions for Two Perturbed Nonlinear Wave Equations with Distributed Delay. Qual. Theory Dyn. Syst. 23, 175 (2024). https://doi.org/10.1007/s12346-024-01035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01035-7

Keywords

Mathematics Subject Classification

Navigation