Skip to main content
Log in

Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence and multiplicity of normalized solutions for the following Kirchhoff equation,

$$\begin{aligned} \left\{ \begin{array}{l} -\left( a+b \int _{\mathbb {R}^{3}}|\nabla u|^{2}dx\right) \Delta u-\lambda u=f(u), \quad \text{ in } \mathbb {R}^{3}, \\ \int _{\mathbb {R}^{3}}|u|^{2} d x=c, \end{array}\right. \end{aligned}$$
(P)

where a, b, c are positive constants and \(\lambda \in \mathbb {R}\) is an unknown parameter that appears as a Lagrange multiplier. Two normal solutions, manifesting as a local minimizer or mountain pass solution, have been obtained under the mass subcritical conditions on the nonlinearity f and some suitable mass c. Additionally, we employ the Symmetric Mountain Pass Theorem to establish the multiplicity of normalized solutions for problem (P). To the best of our knowledge, we extend and complement the research success in the Kirchhoff equation for a general nonlinearity with weaker subcritical mass growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 30, 284–346 (1978)

    Article  MathSciNet  Google Scholar 

  2. Alves, C.O., Corrêa, F., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    Article  MathSciNet  Google Scholar 

  3. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. Theory Methods Appl. 70, 1407–1414 (2009)

    Article  MathSciNet  Google Scholar 

  4. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^{3}\). J. Differ. Equ. 252, 1813–1834 (2012)

    Article  Google Scholar 

  5. Liu, J., Liao, J.F., Tang, C.L.: Positive solutions for Kirchhoff-type equations with critical exponent in \(R^{N}\). J. Math. Anal. Appl. 429, 1153–1172 (2015)

    Article  MathSciNet  Google Scholar 

  6. Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents. J. Math. Anal. Appl. 421, 521–538 (2015)

    Article  MathSciNet  Google Scholar 

  7. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(R^{3}\). J. Funct. Anal. 269, 3500–3527 (2015)

    Article  MathSciNet  Google Scholar 

  8. He, Y., Li, G.B.: Standing waves for a class of Kirchhoff type problems in \(R^{3}\) involving critical sobolev exponents. Calc. Var. Partial. Differ. Equ. 54, 3067–3106 (2015)

    Article  Google Scholar 

  9. Li, G.B., Ye, H.Y.: On the concentration phenomenon of \(L^{2}\)-subcritical constrained minimizers for a class of Kirchhoff equations with potentials. J. Differ. Equ. 266, 7101–7123 (2019)

    Article  Google Scholar 

  10. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)

    Article  MathSciNet  Google Scholar 

  11. Massar, M., Talbi, M.: Radial solutions for a fractional Kirchhoff type equation in \(R^{N}\), Indian Journal of. Pure Appl. Math. 52, 897–902 (2021)

    Google Scholar 

  12. Massar, M.: Existence results for an anisotropic variable exponent Kirchhoff-type problem. Complex Var. Elliptic Equ. 69, 234–251 (2024)

    Article  MathSciNet  Google Scholar 

  13. Ye, H.Y.: The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Mat. Methods Appl. Sci. 38, 2663–2679 (2015)

    Article  MathSciNet  Google Scholar 

  14. Qi, S.J., Zou, W.M.: Exact number of positive solutions for the Kirchhoff equation. SIAM J. Math. Anal. 54, 5424–5446 (2022)

    Article  MathSciNet  Google Scholar 

  15. Ye, H.Y.: The existence of normalized solutions for \(L^{2}\)-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys. 66, 1483–1497 (2015)

    Article  MathSciNet  Google Scholar 

  16. Luo, X., Wang, Q.F.: Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in \(R^{3}\). Nonlinear Anal. Real World Appl. 33, 19–32 (2017)

    Article  MathSciNet  Google Scholar 

  17. Xie, W.H., Chen, H.B.: Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems. Comput. Math. Appl. 76, 579–591 (2018)

    Article  MathSciNet  Google Scholar 

  18. He, Q.H., Lv, Z.Y., Tang, Z.W.: The existence of normalized solutions to the Kirchhoff equation with potential and sobolev critical nonlinearities. J. Geom. Anal. 33, 236 (2023)

    Article  MathSciNet  Google Scholar 

  19. Zeng, X.Y., Zhang, J.J., Zhang, Y.M., Zhong, X.X.: Positive normalized solution to the Kirchhoff equation with general nonlinearities, (2021). arXiv:2112.10293

  20. Ye, H.Y.: The existence and nonexistence of global \(L^{2}\)-constrained minimizers for Kirchhoff equations with \(L^{2}\)-subcritical general nonlinearity. Math. Methods Appl. Sci. 46, 5234–5244 (2023)

    Article  MathSciNet  Google Scholar 

  21. Chen, S.T., Rădulescu, V.D., Tang, X.H.: Normalized solutions of nonautonomous Kirchhoff equations: sub-and super-critical cases. Appl. Math. Optim. 84, 773–806 (2021)

    Article  MathSciNet  Google Scholar 

  22. Hu, J.Q., Mao, A.M.: Normalized solutions to the Kirchhoff equation with a perturbation term. Differ. Integral Equ. 36, 289–312 (2023)

    MathSciNet  Google Scholar 

  23. Feng, X.J., Liu, H.D., Zhang, Z.T.: Normalized solutions for Kirchhoff type equations with combined nonlinearities: the sobolev critical case. Discrete Contin. Dynam. Systems 43(8), 2935–2972 (2023)

    Article  MathSciNet  Google Scholar 

  24. Carrião, P.C., Miyagaki, O.H., Vicente, A.: Normalized solutions of Kirchhoff equations with critical and subcritical nonlinearities: the defocusing case. Partial Differ. Equ. Appl. 3, 64 (2022)

    Article  MathSciNet  Google Scholar 

  25. Jeanjean, L., Lu, S.S.: Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear Schrödinger equation. Math. Models Methods Appl. Sci. 32, 1557–1588 (2022)

    Article  MathSciNet  Google Scholar 

  26. Stuart, C. A.: Bifurcation from the continuous spectrum in the \(L^{2}\) theory of elliptic equations on \(R^{N}\). Recent Methods Nonlinear Anal. Appl. 231–300 (1981)

  27. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982)

    Article  Google Scholar 

  28. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(R^{3}\). J. Differ. Equ. 257, 566–600 (2014)

    Article  Google Scholar 

  29. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  30. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with \(L^{2}\) constraint: mountain pass and symmetric mountain pass approaches. Adv. Nonlinear Stud. 19, 263–290 (2019)

    Article  MathSciNet  Google Scholar 

  31. Ikoma, N., Tanaka, K.: A note on deformation argument for \(L^{2}\) normalized solutions of nonlinear Schrödinger equations and systems. Adv. Differ. Equ. 24, 609–646 (2019)

    Google Scholar 

  32. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82, 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  33. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 1, 223–283 (1984)

    Article  Google Scholar 

  34. Willem, M.: Minimax theorems. Birkhauser, Switzerland (1996)

    Book  Google Scholar 

  35. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Partial. Differ. Equ. 59, 174 (2020)

    Article  MathSciNet  Google Scholar 

  36. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial. Differ. Equ. 56, 1–25 (2017)

    Article  MathSciNet  Google Scholar 

  37. Mariş, M.: On the symmetry of minimizers. Arch. Ration. Mech. Anal. 2, 311–330 (2008)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515010383, 2022A1515010644), the Project of Science and Technology of Guangzhou (No.202102020730).

Author information

Authors and Affiliations

Authors

Contributions

QX gave this original ideal of this paper. LX and FL wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qilin Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Li, F. & Xie, Q. Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation. Qual. Theory Dyn. Syst. 23, 135 (2024). https://doi.org/10.1007/s12346-024-01001-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01001-3

Keywords

Mathematics Subject Classification

Navigation