Skip to main content
Log in

Theory and Computation of Radial Solutions for Neumann Problems with \(\phi \)-Laplacian

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The paper deals with existence, localization and multiplicity of radial positive solutions in the annulus or the ball, for the Neumann problem involving a general \(\phi \)-Laplace operator. Our results apply in particular to the classical Laplacian and to the mean curvature operators in the Euclidean and Minkowski spaces. Numerical experiments with the MATLAB object-oriented package Chebfun are performed to obtain numerical solutions for some concrete equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bartnik, R., Simon, L.: Spacelike hypersurfaces with prescribed boundary values and mean curvature. Commun. Math. Phys. 87, 131–152 (1982). https://doi.org/10.1007/BF01211061

    Article  MathSciNet  Google Scholar 

  2. Benedikt, J., Girg, P., Kotrla, L., Takac, P.: Origin of the \(p\)-Laplacian and A. Missbach. Electron. J. Differ. Equ. 2018(16), 1–17 (2018). http://ejde.math.txstate.edu or http://ejde.math.unt.edu

  3. Bereanu, C., Jebelean, P., Mawhin, J.: Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces. Math. Nachr. 283, 379–391 (2010). https://doi.org/10.1002/mana.200910083

    Article  MathSciNet  Google Scholar 

  4. Bonheure, D., Noris, B., Weth, T.: Increasing radial solutions for Neumann problems without growth restrictions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 573–588 (2012). https://doi.org/10.1016/j.anihpc.2012.02.002

    Article  MathSciNet  Google Scholar 

  5. Bonheure, D., Serra, E., Tilli, P.: Radial positive solutions of elliptic systems with Neumann boundary conditions. J. Funct. Anal. 265, 375–398 (2013). https://doi.org/10.1016/j.jfa.2013.05.027

    Article  MathSciNet  Google Scholar 

  6. Boscaggin, A., Colasuonno, F., Noris, B.: Multiple positive solutions for a class of \(p\)-Laplacian Neumann problems without growth conditions. ESAIM Control Optim. Calc. Var. 24, 1625–1644 (2018). https://doi.org/10.1051/cocv/2017074

    Article  MathSciNet  Google Scholar 

  7. Boscaggin, A., Feltrin, G.: Pairs of positive radial solutions for a Minkowski-curvature Neumann problem with indefinite weight. Nonlinear Anal. 196, 111807 (2020). https://doi.org/10.1016/j.na.2020.111807

    Article  MathSciNet  Google Scholar 

  8. Colasuonno, F., Noris, B.: Radial positive solutions for \(p\)-Laplacian supercritical Neumann problems. Bruno Pini Math. Anal. Semin. 8(1), 55–72 (2017). https://doi.org/10.6092/issn.2240-2829/7797

    Article  MathSciNet  Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985)

    Book  Google Scholar 

  10. Gheorghiu, C.I.: A third-order nonlinear BVP on the half-line, Chebfun (2020). https://www.chebfun.org/examples/ode-nonlin/GulfStream.html

  11. López-Gómez, J., Omari, P., Rivetti, S.: Positive solutions of a one-dimensional indefinite capillarity-type problem: a variational approach. J. Differ. Equ. 262, 2335–2392 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ma, R., Chen, T., Wang, H.: Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions. J. Math. Anal. Appl. 443, 542–565 (2016). https://doi.org/10.1016/j.jmaa.2016.05.038

    Article  MathSciNet  Google Scholar 

  13. O’Regan, D., Wang, H.: Positive radial solutions for \(p\)-Laplacian systems. Aequ. Math. 75, 43–50 (2008). https://doi.org/10.1007/s00010-007-2909-3

    Article  MathSciNet  Google Scholar 

  14. Precup, R.: Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems. J. Math. Anal. Appl. 352, 48–56 (2009). https://doi.org/10.1016/j.jmaa.2008.01.097

    Article  MathSciNet  Google Scholar 

  15. Precup, R., Pucci, P., Varga, C.: Energy-based localization and multiplicity of radially symmetric states for the stationary \(p\)-Laplace diffusion. Complex Var. Ellipt. Equ. 65, 1198–1209 (2020). https://doi.org/10.1080/17476933.2019.1574774

    Article  MathSciNet  Google Scholar 

  16. Precup, R., Rodriguez-Lopez, J.: Positive radial solutions for Dirichlet problems via a Harnack type inequality Math. Meth. Appl. Sci. 46(2), 2972–2985 (2023). https://doi.org/10.1002/mma.8682

  17. Trefethen, L.N.: Computing numerically with functions instead of numbers. Math. Comput. Sci. 1, 9–19 (2007). https://doi.org/10.1007/s11786-007-0001-y

    Article  MathSciNet  Google Scholar 

  18. Trefethen, L.N., Birkisson, A., Driscoll, T.A.: Exploring ODEs. SIAM, Philadelphia (2018)

    Google Scholar 

  19. Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Differ. Equ. 109, 1–7 (1994). https://doi.org/10.1006/jdeq.1994.1042

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R.P. wrote the main part of the theory; C.I.G. wrote the numerical part and prepared all figures; Both authors wrote the introduction and contributed to editing.

Corresponding author

Correspondence to Radu Precup.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Precup, R., Gheorghiu, CI. Theory and Computation of Radial Solutions for Neumann Problems with \(\phi \)-Laplacian. Qual. Theory Dyn. Syst. 23, 107 (2024). https://doi.org/10.1007/s12346-024-00963-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-00963-8

Keywords

Mathematics Subject Classification

Navigation