Skip to main content
Log in

Bilinear Form, Bilinear Bäcklund Transformations, Breather and Periodic-Wave Solutions for a (2+1)-Dimensional Shallow Water Equation with the Time-Dependent Coefficients

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Shallow water waves are seen in geophysical fluid dynamics, oceanography, coastal engineering and atmospheric science. In this paper, to describe the shallow water waves, we investigate a (2+1)-dimensional shallow water equation with the time-dependent coefficients via symbolic computation. Based on the Hirota method and Painlevé integrable conditions in the existing literature, the bilinear form for that equation is hereby constructed. Via the bilinear form and exchange formulae, we build three bilinear Bäcklund transformations with certain soliton-like solutions. Via the extended homoclinic test approach, we derive the breather solutions and their asymptotic behaviors. We graphically show the breather waves. Periodic-wave solutions are worked out via the Hirota-Riemann method, and graphically displayed. Relation between the periodic-wave solutions and one-soliton solutions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Reference [34] has researched the Painlevé integrable conditions, i.e., Conditions (7), and gained some real- and complex-soliton solutions for Eq. (1).

References

  1. Thomas, J., Ding, L.: Upscale transfer of waves in one-dimensional rotating shallow water. J. Fluid Mech. 961, A2 (2023)

    MathSciNet  MATH  Google Scholar 

  2. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow-water investigations: Bilinear auto-Bäcklund transformations for a (3+1)-dimensional generalized nonlinear evolution system. Appl. Comput. Math. 22, 133–142 (2023)

    Google Scholar 

  3. Gao, X.Y., Guo, Y.J., Shan, W.R.: On a Whitham-Broer-Kaup-like system arising in the oceanic shallow water. Chin. J. Phys. 82, 194–200 (2023)

    MathSciNet  Google Scholar 

  4. Kumar, S., Kumar, D.: Analytical soliton solutions to the generalized (3+1)-dimensional shallow water wave equation. Mod. Phys. Lett. B 36, 2150540 (2022)

    MathSciNet  Google Scholar 

  5. Badiey, M., Castro-Correa, J.A., Escobar-Amado, C.D., Wan, L., Hodgkiss, W.: Effect of oceanography on broadband acoustic wave propagation in a range dependent shallow water environment. J. Acoust. Soc. Am. 153, A57–A57 (2023)

    Google Scholar 

  6. Varsoliwala, A.C., Singh, T.R.: Mathematical modeling of atmospheric internal waves phenomenon and its solution by Elzaki Adomian decomposition method. J. Ocean Eng. Sci. 7, 203–212 (2022)

    Google Scholar 

  7. Ma, H.C., Ni, K., Deng, A.: Lump solutions to the (\(2{+} 1\))-dimensional shallow water wave equation. Therm. Sci. 21, 1765–1769 (2017)

    Google Scholar 

  8. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (\(3{+}1\))-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599–1616 (2022)

    Google Scholar 

  9. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (\(2{+}1\))-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    MathSciNet  MATH  Google Scholar 

  10. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  11. Zafar, A., Shakeel, M., Ali, A., Rezazadeh, H., Bekir, A.: Analytical study of complex Ginzburg–Landau equation arising in nonlinear optics. J. Nonlinear Opt. Phys. 32, 2350010 (2023)

    Google Scholar 

  12. Fahim, M.R.A., Kundu, P.R., Islam, M.E., Akbar, M.A., Osman, M.S.: Wave profile analysis of a couple of (\(3{+} 1\))-dimensional nonlinear evolution equations by sine-Gordon expansion approach. IEEE J. Ocean. Eng. 7, 272–279 (2022)

    Google Scholar 

  13. Ma, H.C., Ruan, G.D., Ni, K., Deng, A.P.: Rational solutions to an Caudrey-Dodd-Gibbon-Sawada-Kotera-like equation. Therm. Sci. 20, 871–874 (2016)

    Google Scholar 

  14. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    MathSciNet  MATH  Google Scholar 

  15. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: \(N\)-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    MathSciNet  MATH  Google Scholar 

  16. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: \(N\)-fold Darboux transformation and solitonic interactions for the Kraenkel–Manna–Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641–2649 (2023)

    Google Scholar 

  17. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

    Google Scholar 

  18. Wu, X.H., Gao, Y.T., Yu, X., Liu, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641–5653 (2023)

    Google Scholar 

  19. Feng, C.H., Tian, B., Yang, D.Y., Gao, X.T.: Lump and hybrid solutions for a (3+1)-dimensional Boussinesq-type equation for the gravity waves over a water surface. Chin. J. Phys. 83, 515–526 (2023)

    MathSciNet  Google Scholar 

  20. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818–2824 (2022)

    MathSciNet  Google Scholar 

  21. Shen, Y., Tian, B., Cheng, C.D., Zhou, T.Y.: Pfaffian solutions and nonlinear waves of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics. Phys. Fluids 35, 025103 (2023)

    Google Scholar 

  22. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (\(3+1\))-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    MATH  Google Scholar 

  23. Zhao, Z., Yue, J., He, L.: New type of multiple lump and rogue wave solutions of the (\(2+ 1\))-dimensional Bogoyavlenskii–Kadomtsev–Petviashvili equation. Appl. Math. Lett. 133, 108294 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Zhao, Z., He, L., Wazwaz, A.M.: Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves. Chin. Phys. B 32, 040501 (2023)

    Google Scholar 

  25. Zhao, Z., He, L.: A new type of multiple-lump and interaction solution of the Kadomtsev–Petviashvili I equation. Nonlinear Dyn. 109, 1033–1046 (2022)

    Google Scholar 

  26. Chen, S.J., Lü, X., Tang, X.F.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 95, 105628 (2021)

    MathSciNet  MATH  Google Scholar 

  27. Lan, Z.Z.: Periodic, breather and rogue wave solutions for a generalized (\(3+ 1\))-dimensional variable-coefficient B-type Kadomtsev-Petviashvili equation in fluid dynamics. Appl. Math. Lett. 94, 126–132 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    MATH  Google Scholar 

  29. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber. Wave. Random Complex (2023). https://doi.org/10.1080/17455030.2021.1983237

    Article  Google Scholar 

  30. Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev–Petviashvili equation with variable time coeffcient using Hirota method. Phys. Scr. 96, 125255 (2021)

    Google Scholar 

  31. Li, L.Q., Gao, Y.T., Yu, X., Jia, T.T., Hu, L., Zhang, C.Y.: Bilinear forms, bilinear Bäcklund transformation, soliton and breather interactions of a damped variable-coefficient fifth-order modified Korteweg-de Vries equation for the surface waves in a strait or large channel. Chin. J. Phys. 77, 915–926 (2022)

  32. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn. 96, 1491–1496 (2019)

    MATH  Google Scholar 

  33. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (\(2{+}1\))-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417–2428 (2022)

    Google Scholar 

  34. Wazwaz, A.M.: Painlevé analysis for higher-dimensional integrable shallow water waves equations with time-dependent coefficients. Rom. Rep. Phys. 72, 110 (2020)

    Google Scholar 

  35. Wazwaz, A.M.: Construction of solitary wave solutions and rational solutions for the KdV equation by Adomian decomposition method. Chaos Solitons Fract. 12, 2283–2293 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Hammack, J.L., Segur, H.: The Korteweg-de Vries equation and water waves. Part 2. Comparison with experiments. J. Fluid Mech. 65, 289–314 (1974)

    MathSciNet  MATH  Google Scholar 

  37. Karunakar, P., Chakraverty, S.: Effect of Coriolis constant on Geophysical Korteweg-de Vries equation. J. Ocean Eng. Sci. 4, 113–121 (2019)

    Google Scholar 

  38. Wazwaz, A.M.: Multiple kink solutions for two coupled integrable \((2{+}1)\)-dimensional systems. Appl. Math. Lett. 58, 1–6 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Roshid, H., Ma, W.X.: Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model. Phys. Lett. A 382, 3262–3268 (2018)

    MathSciNet  Google Scholar 

  40. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    MathSciNet  MATH  Google Scholar 

  41. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations. Qual. Theory Dyn. Syst. 22, 17 (2023)

    MATH  Google Scholar 

  42. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, \(N\)-fold Darboux transformation and explicit exact solutions. Chaos Silotons Fract. 164, 112460 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y.: Report on an extended three-coupled Korteweg-de Vries system. Ricerche Mat. (2023). https://doi.org/10.1007/s11587-023-00769-x

  44. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    MathSciNet  MATH  Google Scholar 

  45. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  46. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (\(3+ 1\))-dimensional nonlinear evolution equation. Nonlinear Dyn. 108, 4181–4194 (2022)

    Google Scholar 

  47. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (\(3+ 1\))-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    MATH  Google Scholar 

  49. Seadawy, A.R., Rizvi, S.T.R., Ahmad, S., Younisand, M., Baleanu, D.: Lump, lump-one stripe, multiwave and breather solutions for the Hunter–Saxton equation. Open Phys. 19, 1–10 (2021)

    Google Scholar 

  50. Zhao, Z., He, L.: Bäcklund transformations and Riemann-Bäcklund method to a (3+1)-dimensional generalized breaking soliton equation. Eur. Phys. J. Plus 135, 639 (2020)

    Google Scholar 

  51. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, \(N\)-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Contributions

C.-H.F.: Writing-original draft, writing-review & editing. B.T.: Supervision, writing-review. D.-Y.Y.: Validation, writing-review & editing. X.-T.G.: Validation, writing-review & editing.

Corresponding authors

Correspondence to Chun-Hui Feng or Bo Tian.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, CH., Tian, B., Yang, DY. et al. Bilinear Form, Bilinear Bäcklund Transformations, Breather and Periodic-Wave Solutions for a (2+1)-Dimensional Shallow Water Equation with the Time-Dependent Coefficients. Qual. Theory Dyn. Syst. 22, 147 (2023). https://doi.org/10.1007/s12346-023-00813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00813-z

Keywords

Navigation