Skip to main content
Log in

Ground State and Sign-Changing Solutions for Critical Schrödinger–Poisson System with Lower Order Perturbation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article is devoted to study the following Schrödinger–Poisson system

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u+V(x)u+K(x)\phi u=a(x)|u|^{p-2}u+|u|^4u, &{}x\in {\mathbb {R}}^3, \\ -\Delta \phi =K(x)u^2, &{}x\in \mathbb {R}^3, \end{array} \right. \end{aligned}$$

where \(4<p<6\), V(x), K(x) and a(x) are nonnegative functions. Under some reasonable conditions on V(x), K(x) and a(x), particularly a(x) can be unbounded, we first investigate the existence of one positive ground state solution and the corresponding energy estimate with the help of Nehari manifold. Meanwhile, its regularity is established through the interior \(L^p\)-estimate. Subsequently, heavily relying on the above results, especially the regularity, we show that the problem possesses one least energy sign-changing solution with precisely two nodal domains by employing constraint variational method and the deformation lemma due to Hofer. Moreover, energy doubling is established, that is, the energy of sign-changing solution is strictly larger than that of the ground state solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

The authors declare that data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Alves, C.O., Souto, M.A.S., Soares, S.H.M.: A sign-changing solution for the Schrödinger–Poisson equation in \(\mathbb{R} ^3\). Rocky Mountain J. Math. 47, 1–25 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Souto, Marco AS.: Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly. J. Differ. Equ. 254, 1977–1991 (2013)

    MATH  Google Scholar 

  3. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(\mathbb{R}^N\), Progr. Math. vol. 240. Birkhäuser (2006)

  4. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25–42 (2005)

    MATH  Google Scholar 

  6. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 259–281 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger–Poisson system with sign-changing potentials. Nonlinear Anal. Real World Appl. 39, 142–156 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Castro, A., Cossio, J., Neuberger, J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27, 1041–1053 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Cerami, G.: Some nonlinear elliptic problems in unbounded domains. Milan J. Math. 74, 47–77 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Funct. Anal. 69, 289–306 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)

    MATH  Google Scholar 

  15. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \(\mathbb{R}^3\). Z. Angew. Math. Phys. 67, 102, 18 pp (2016)

  16. Chen, X., Tang, C.: Least energy sign-changing solutions for Schrödinger–Poisson system with critical growth. Commun. Pure Appl. Anal. 20, 2291–2312 (2021)

    MathSciNet  MATH  Google Scholar 

  17. Chen, X., Tang, C.: Positive and sign-changing solutions for critical Schrödinger-Poisson systems with sign-changing potential. Qual. Theory. Dyn. Syst. 21(3), Paper No. 89 (2022)

  18. D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)

    MathSciNet  MATH  Google Scholar 

  19. D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinburgh Sect. A 134, 893–906 (2004)

    MATH  Google Scholar 

  20. D’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud. 2, 177–192 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Ding, Y., Szulkin, A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29, 397–419 (2007)

    MATH  Google Scholar 

  22. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, vol. 224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1983)

  23. Hirano, N., Shioji, N.: A multiplicity result including a sign-changing solution for an inhomogeneous Neumann problem with critical exponent. Proc. R. Soc. Edinburgh Sect. A 137, 333–347 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261, 493–514 (1982)

    MathSciNet  MATH  Google Scholar 

  25. Huang, L., Rocha, E.M.: A positive solution of a Schrödinger–Poisson system with critical exponent. Commun. Math. Anal. 15, 29–43 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Huang, L., Rocha, E.M., Chen, J.: Positive and sign-changing solutions of a Schrödinger–Poisson system involving a critical nonlinearity. J. Math. Anal. Appl. 408, 55–69 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Ianni, I.: Sign-changing radial solutions for the Schrödinger–Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 356–385 (2013)

    MATH  Google Scholar 

  28. Khoutir, S.: Infinitely many high energy radial solutions for a class of nonlinear Schrödinger–Poisson system in \(\mathbb{R} ^3\). Appl. Math. Lett. 90, 139–145 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Li, G.: Some properties of weak solutions of nonlinear scalar fields equation. Ann. Acad. Sci. Fenn. Math. 14, 27–36 (1989)

    Google Scholar 

  31. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)

    MathSciNet  MATH  Google Scholar 

  32. Li, Y., Li, F., Shi, J.: Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term. Calc. Var. Partial Differ. Equ. 56, 134 (2017)

    MATH  Google Scholar 

  33. Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R}^3\). J. Math. Anal. Appl. 435, 783–799 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Liu, Z., Guo, S.: On ground state solutions for the Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 412, 435–448 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system. Ann. Mat. Pura Appl. 195, 775–794 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)

    MathSciNet  MATH  Google Scholar 

  37. Qian, A., Liu, J., Mao, A.: Ground state and nodal solutions for a Schrödinger–Poisson equation with critical growth. J. Math. Phys. 59, 121509 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of Nonlinear Problems, pp. 141–195. CIME, Rome (1974)

    Google Scholar 

  39. Ruiz, D.: Semiclassical states for coupled Schrödinger–Maxwell equations: concentration around a sphere. Math. Models Methods Appl. Sci. 15, 141–164 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    MathSciNet  MATH  Google Scholar 

  41. Sánchez, O., Soler, J.: Long-time dynamics of the Schröginger–Poisson–Salter system. J. Stat. Phys. 144, 179–204 (2004)

    MATH  Google Scholar 

  42. Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R} ^3\). Z. Angew. Math. Phys. 66, 3267–3282 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Strume, M.: Variational Methods: Applications to Nonlinear Partial Differential equations and Hamiltonian Systems, 4th edn. Springer, Berlin (2008)

    Google Scholar 

  44. Sun, J., Wu, T., Feng, Z.: Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system. J. Differ. Equ. 260, 586–627 (2016)

    MATH  Google Scholar 

  45. Tang, X.: Infinitely many solutions for semilinear Schrödinger equations with sign-changing potential and nonlinearity. J. Math. Anal. Appl. 401, 407–415 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Tarantello, G.: Nodal solutions of semilinear elliptic equations with critical exponent. Differ. Integral Equ. 5, 25–42 (1992)

    MathSciNet  MATH  Google Scholar 

  47. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger–Poisson system with critical growth. J. Math. Anal. Appl. 479, 2284–2301 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \(\mathbb{R} ^3\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

    MATH  Google Scholar 

  49. Wang, Z., Zhou, H.: Positive solutions for a nonlinear stationary Schrödinger–Poisson system in \(\mathbb{R} ^3\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)

    MathSciNet  Google Scholar 

  50. Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R} ^3\). Calc. Var. Partial Differ. Equ. 52, 927–943 (2015)

    MATH  Google Scholar 

  51. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston (1996)

    MATH  Google Scholar 

  52. Xie, W., Chen, H., Shi, H.: Multiplicity of positive solutions for Schrödinger–Poisson systems with a critical nonlinearity in \(\mathbb{R} ^3\). Bull. Malays. Math. Sci. Soc. 42, 2657–2680 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Ye, C., Teng, K.: Ground state and sign-changing solutions for fractional Schrödinger–Poisson system with critical growth. Complex Var. Elliptic Equ. 65, 1360–1393 (2020)

    MathSciNet  MATH  Google Scholar 

  54. Ye, Y.: Ground state solutions for nonautonomous Schrödinger–Poisson systems involving critical exponent. Bull. Math. Soc. Sci. Math. Roumanie 62, 199–207 (2019)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, Z., Wang, Y., Yuan, R.: Ground state sign-changing solution for Schrödinger–Poisson system with critical growth. Qual. Theory Dyn. Syst. 20, 48 (2021)

    MATH  Google Scholar 

  56. Zhang, J.: On the Schrödinger–Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75, 6391–6401 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, J.: On ground state and nodal solutions of Schrödinger–Poisson equations with critical growth. J. Math. Anal. Appl. 428, 387–404 (2015)

    MathSciNet  MATH  Google Scholar 

  58. Zhang, J.: Ground state and multiple solutions for Schrödinger–Poisson equations with critical nonlinearity. J. Math. Anal. Appl. 440, 466–482 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Zhang, J., do Ó, J.M., Squassina, M.: Schrödinger-Poisson systems with a general critical nonlinearity. Commun. Contemp. Math. 1650028 (2016)

  60. Zhang, X., Ma, S., Xie, Q.: Bound state solutions for Schrödinger–Poisson system with critical exponent. Discrete Contin. Dyn. Syst. 37, 605–625 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger–Poisson system with a critical nonlinearity in \(\mathbb{R} ^3\). Nonlinear Anal. Real World Appl. 39, 166–184 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Zou, W.: Sign-Changing Critical Point Theory. Springer, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Y. Wang wrote the main manuscript text. Z. Zhang reviewed the manuscript.

Corresponding author

Correspondence to Ziheng Zhang.

Ethics declarations

Conflict of interest

The authors state no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the National Natural Science Foundation of China (Grant No. 11771044 and No. 12171039).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, Y. Ground State and Sign-Changing Solutions for Critical Schrödinger–Poisson System with Lower Order Perturbation. Qual. Theory Dyn. Syst. 22, 76 (2023). https://doi.org/10.1007/s12346-023-00764-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00764-5

Keywords

Mathematics Subject Classification

Navigation