Skip to main content
Log in

An Open Set of Skew Products with Invariant Multi-graphs and Bony Multi-graphs

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The main goal in this paper is to study attracting invariant multi-graphs for a certain class of skew products. An invariant multi-graph is an invariant compact set which is a finite union of invariant graphs, and thus consists of a finite number of points on each fiber. We introduce invariant bony multi-graphs and construct an open set of skew products over an invertible base map (solenoid map) having attracting invariant multi-graphs and bony multi-graphs. These multi-graphs are the support of finitely many ergodic SRB measures. In this study some thermodynamic properties are investigated for these systems. We will provide some sufficient conditions ensuring the existence of equilibrium states supported on invariant multi-graphs. Finally, we extend our results to a family of skew products over a generalized baker map.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hirsch, M., Pugh, C.: Stable manifolds and hyperbolic sets. Bull. Am. Math. Soc. 75, 149–152 (1969)

    MathSciNet  MATH  Google Scholar 

  2. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. In: Lect. Notes Math., pp. 12–32. Springer, Berlin (1977)

    Google Scholar 

  3. Stark, J.: Invariant graphs for forced systems. Phys. D. 109, 163–179 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Stark, J.: Regularity of invariant graphs for forced systems. Ergod. Theory Dyn. Syst. 9, 155–199 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Zaj, M., Fakhari, A., Ghane, F.H., Ehsani, A.: Physical measures for certain class of non-uniformly hyperbolic endomorphisms on the solid torus. Discrete Contin. Dyn. Syst. Ser A. 38(4), 1777 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Zaj, M., Ghane, F.H.: Non hyperbolic Solenoidal thick bony attractors. Qual. Theory Dyn. Syst. 18(1), 35–55 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Campbell, K.M., Davies, M.E.: The existence of inertial functions in skew product systems. Nonlinearity 9, 801–817 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Campbell, K.M.: Observational noise in skew product systems. Phys. D. 107, 43–56 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Stark, J., Sturman, R.: Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity. 13(1), 113–143 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. A universal concept in nonlinear sciences, Cambridge University Press (2001)

    MATH  Google Scholar 

  11. Rulkov, N.F., Sushchik, M.M., Tsimring, L.S., Abarbanel, H.D.I.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E. 51, 980–994 (1995)

    Google Scholar 

  12. Homburg, A.J.: Synchronization in Minimal Iterated Function Systems on Compact Manifolds. Bullet. Brazil. Math. Soc. 49(3), 615–635 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Broomhead, D., Hadjiloucas, D., Nicol, M.: Random and deterministic perturbation of a class of skew-product systems. Dyn. Stab. Syst. 14, 115–128 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Davies, M.E., Campbell, K.M.: Linear recursive filters and nonlinear dynamics. Nonlinearity 9, 487–499 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Hunt, B.R., Ott, E., Yorke, J.A.: Differentiable generalized synchronization of chaos. Phys. Rev. E 55, 4029 (1997)

    MathSciNet  Google Scholar 

  16. Pecora, L.M., Carroll, T.L.: Discontinuous and nondifferentiable functions and dimension increase induced by filtering chaotic data. Chaos 6, 432–439 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Stark, J., Davies, M.E.: Recursive filters driven by chaotic signals. IEE Colloq. Exploit. Chaos in Signal Proce. IEE Digest. 143, 1–516 (1994)

    Google Scholar 

  18. Jäger, T.: Skew product systems with one-dimensional fibres. Lecture notes for a course given at several summer schools (2013)

  19. Jäger, T.: Quasiperiodically forced interval maps with negative Schwarzian derivative. Nonlinearity 16(4), 1239–1255 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Fadaei, S., Keller, G., Ghane, F.H.: Invariant graphs for chaotically driven maps. Nonlinearity. 31(11), 5329–5349 (2018)

    MathSciNet  Google Scholar 

  21. Kleptsyn, V., Volk, D.: Physical measures for random walks on interval. Mosc. Math. J. 14(2), 339–365 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Kudryashov, Y.G.: Bony attractors. Funkts. Anal. Prilozhen. 44(3), 219–222 (2010)

    Google Scholar 

  23. Jäger, T., Keller, G.: Random minimality and continuity of invariant graphs in random dynamical systems. Trans. Amer. Math. Soc. 368, 6643–6662 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Gelfert, K., Oliveira, D.: Invariant multi-graphs in step skew products. Dyn. Syst. 39, 1–28 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Viana, M., Yang, J.: (2013) Physical measures and absolute continuity for one-dimensional center direction. Ann. de Inst. Henri Poincare (C) Non Linear Anal. 30(5): 845-877

  26. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lect. Notes in Math. 470, 78–104 (1975)

    MathSciNet  MATH  Google Scholar 

  27. Ruelle, D., Sinai, Y.G.: From dynamical systems to statistical mechanics and back. Phys. A: Statist. Mechan. Appl. 140(1–2), 1–8 (1986)

    MathSciNet  MATH  Google Scholar 

  28. Sinai, Y.G.: Gibbs measures in ergodic theory. Russian Math. Surveys. 27, 21–69 (1972)

    MathSciNet  MATH  Google Scholar 

  29. Ramos, V., Viana, M.: Equilibrium states for hyperbolic potentials. Nonlinearity 30, 825–847 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Rauch, M.: Variational principles for the topological pressure of measurable potentials. Discrete Contin. Dyn. Syst. Series S. 10(2), 367–394 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Williams, R.F.: Expanding attractors. Inst. Hautes Etudes Sci. Publ. Math. 43, 169–203 (1974)

    MathSciNet  MATH  Google Scholar 

  32. Mane, R.: Ergodic Theory and Differentiable Dynamics of Ergebnisse der Mathematik und ihrer Grenzgebiete Results in Mathematics and Related Areas, pp. 33–41. Springer, Berlin (1987)

    Google Scholar 

  33. Arnold, L.: Random Dynamical Systems. In: Springer Monographs in Mathematics, pp. 11–22. Springer, Berlin and Heidelberg (2002)

    Google Scholar 

  34. Furstenberg, H.: Strict ergodicity and transformation of the torus. Am. J. Math. 83, 573–601 (1961)

    MathSciNet  MATH  Google Scholar 

  35. Milnor, J.: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985)

    MathSciNet  MATH  Google Scholar 

  36. Jachymski, J.R.: An fixed point criterion for continuous self mappings on a complete metric space. Aequations Math. 48, 163–170 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Bielecki, A.: Iterated function systems analogues on compact metric spaces and their attractors. Univ. Iagel. Acta Math. 32, 187–192 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Edalat, A.: Power Domains and Iterated Function Systems. Inform. and Comput. 124, 182–197 (1996)

    MathSciNet  MATH  Google Scholar 

  39. Nassiri, M., Pujals, E.R.: Robust transitivity in hamiltonian dynamics. Annales Scient. de l’École Normale Supérieure, Série, Tome 45(2), 191–239 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Krengel, U.: Ergodic Theorems, pp. 103–121. de Gruyter Studies in Mathematics. Walter de Gruyter, Berlin (1985)

    MATH  Google Scholar 

  41. Bugeaud, Y.: Distribution modulo one and Diophantine approximation. In: Cambridge Tracts in Mathematics, pp. 117–128. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  42. Walter, P.: An Introduction to Ergodic Theory. Springer-Verlag, New York, Heidelberg, Berlin (1982)

    Google Scholar 

  43. Viana, M., Oliveira, K.: Foundationa of Ergodic Theory. Cambridge Studies in Advanced Mathematics, Cambridge (2016)

    MATH  Google Scholar 

  44. Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. 16, 568–579 (1977)

    MathSciNet  MATH  Google Scholar 

  45. Bowen, R.: Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184, 125–136 (1973)

    MathSciNet  MATH  Google Scholar 

  46. Feng, D.J., Huang, W.: Variational principles for topological entropies of subsets. J. Funct. Anal. 263(8), 2228–54 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Cao, Y.L., Feng, D.J., Huang, W.: The thermodynamic formalism for sub-additive potentials. Discrete Contin. Dyn. Syst. 20, 639–657 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Barral, J., Feng, D.-J.: Weighted thermodynamic formalism on subshifts and applications. Asian J. Math. 16, 319–352 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Feng, D.J., Huang, W.: Variational principle for weighted topological pressure. Journal de Mathématiques Pures et Appliquées. 106(3), 411–452 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Aliprantis, C., Border, K.: Infinite Dimensional Analysis, 3rd edn. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank anonymous reviewer whose remarks improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Ghane.

Ethics declarations

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabiee, M., Ghane, F.H. & Zaj, M. An Open Set of Skew Products with Invariant Multi-graphs and Bony Multi-graphs. Qual. Theory Dyn. Syst. 21, 147 (2022). https://doi.org/10.1007/s12346-022-00670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00670-2

Keywords

Mathematics Subject Classification

Navigation