Skip to main content
Log in

On the Decay of Solutions of the Linearized Equations of Conservation Equations with Viscosity and Relaxation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we study the stability of homogeneous states in a continuous one spatial variable of conservation equations in Lagrangian coordinates, including terms of dissipation and relaxation. Local existence is proved applying Kawashima’s theorem for hyperbolic-parabolic systems [7]. We establish that when the subcharactertistic condition is satisfied, the structure of the system is not of regularity-loss type, but of the standard type, even though the linear term associated with relaxation is not symmetric nor positive semidefinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Angeles, F., Málaga, C., Plaza, R.: Strict Dissipativity of Cattaneo-Christov Systems for Compressible Fluid Flow. J. Phys. A: Math. Theor. 53, 065701 (2020)

    Article  MathSciNet  Google Scholar 

  2. Beauchard, K., Zuazua, E.: Large time asymptotics for partially dissipative hyperbolic systems. Arch. Rat. Mech. Anal. 199, 177–227 (2011). https://doi.org/10.1007/s00205-010-0321-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Chern, I.-L.: Long-time effect of relaxation for hyperbolic conservation laws. Comm. Math. Phys. 172, 39–55 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chou, S., Hong, J., Lin, Y.: Existence and large time stability of traveling wave solutions to non linear balance laws in traffic flow. Communications in Math Science 11(4), 1011–1037 (2013)

    Article  MATH  Google Scholar 

  5. Delgado, J., Saavedra, P.: Global bifurcation diagram for the Kerner-Konhäuser traffic flow model. International Journal of Bifurcation and Chaos 25(5), 1550064 (2015). https://doi.org/10.1142/S0218127415500649

    Article  MathSciNet  MATH  Google Scholar 

  6. Inoue, K., Nishida, T.: On the Broadwell Model of the Boltzmann Equation for a Simple Discrete Velocity Gas. Applied Mathematics & Optimzation 3(1), 27–49 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kawashima, S.: Systems of hyperbolic-parabolic composite type with applications to the equations of magnetohydrodynamics. Doctor of Engineering Thesis. Kyoto University. (1983)

  8. Kerner, B.S., Konhäuser, P.: Structure and parameters of clusters in traffic flow. Phys. Rev. E 50, 54 (1994)

    Article  Google Scholar 

  9. Jin, S., Liu, J.G.: Relaxation and diffusion enhanced dispersive waves. Proc. R. Soc. Lond. A 446, 555–563 (1994)

    Article  MATH  Google Scholar 

  10. Li, T., Liu, H.L.: Stability of a traffic flow model with nonconvex relaxation. Comm. Math. Sci. 3, 101–118 (2005). https://doi.org/10.4310/CMS.2005.v3.n2.a1

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, T., Liu, H.: Critical thresholds in a relaxation model for traffic flows. Indiana University Mathematics Journal 57, 3, 1409–1430 (2008) https://www.jstor.org/stable/24902990

  12. Liu, T., Zeng, Y.: Large time behavior of solution for general quasilinear hyperbolic-parabolic systems of conservation laws. Memoirs of the AMS 15, 599 (1997)

    Google Scholar 

  13. Li, T.: Stability of traveling waves in quasi-linear hyperbolic systems with relaxation and diffusion. SIAM Jour. Math. Anal. 40(3), 1058–1075 (2008). https://doi.org/10.1137/070690638

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Comm Math Phys. 108(1), 153–175 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mascia, C.: Twenty eight years with ”hyperbolic conservation laws with relaxation.” Acta Mathematica Scientia 35B(4), 807–831 (2015). https://doi.org/10.1016/S0252-9602(15)30023-0

  16. Mascia, C.: Stability and Instability Issues for relaxation shock profiles. In hyperbolic problems: theory, numerics, applications. Sylvie Benzoni-Gavage and Denis Serre (eds.) Springer (2006)

  17. Mori, N., Kawashima, S.: Decay property of the Timoshenko Cattaneo system. Analysis and Applications 14(03), 393–413 (2016). https://doi.org/10.1142/S0219530515500062

    Article  MathSciNet  MATH  Google Scholar 

  18. Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathematiques D’Orsay 78, 02 (1978)

    MathSciNet  Google Scholar 

  19. Ueda, Y., Duan, R., Kawashima, S.: Decay structure for symmetric hyperbolic systems With non-symmetric relaxation and its application. Archive for Rational Mechanics and Analysis 205, 239–266 (2012). arXiv:1407.6448v1

    Article  MathSciNet  MATH  Google Scholar 

  20. Umeda, T., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of the electro-magneto-fluid dynamics. Japan Journal Applied Math. 1, 435–457 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Shizuta, Y., Kawashima, S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Velasco, R.M., Saavedra, P.: Clusters in macroscopic traffic flow models. World Journal of Mechanics 2, 51–60 (2012). https://doi.org/10.4236/wjm.2012.21007

    Article  Google Scholar 

  23. Zeng, Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Rat. Mech. Anal. 150, 225–279 (1999). https://doi.org/10.1007/s002050050188

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a CONACYT grant A1-S-41007 “Bifurcaciones en el estudio de la existencia y estabilidad de soluciones de EDP”. We thank the unkown referees for their patience and valuable corrections and suggestions to improve the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquín Delgado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado, J., Saavedra, P. On the Decay of Solutions of the Linearized Equations of Conservation Equations with Viscosity and Relaxation. Qual. Theory Dyn. Syst. 21, 101 (2022). https://doi.org/10.1007/s12346-022-00630-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00630-w

Keywords

Mathematics Subject Classification

Navigation