Skip to main content
Log in

Investigation of Controllability and Observability for Linear Quaternion-Valued Systems from Its Complex-Valued Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we adopt a new approach to study the controllability and observability of linear quaternion-valued systems (QVS) from the point of complex-valued systems, which is much different from the method used in the previous paper. We show the equivalence relation of complete controllability for linear QVS and its complex-valued system. Then we establish two effective criteria for controllability and observability of the linear QVS in the sense of complex representation. In addition, we give a direct method to solve the control function. Finally, we use numerical examples to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

No Data.

References

  1. Adler, S.L.: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611–656 (1986)

    Article  MathSciNet  Google Scholar 

  2. Leo, S.D., Ducati, G.C., Nishi, C.C.: Quaternionic potentials in non-relativistic quantum mechanics. J. Phys. A: Math. Gen. 35, 5411–5426 (2002)

    Article  MathSciNet  Google Scholar 

  3. Leo, S.D., Ducati, G.C.: Delay time in quaternionic quantum mechanics. J. Math. Phys. 53, 022102 (2012)

    Article  MathSciNet  Google Scholar 

  4. Jiang, B.X., Lu, J.Q., Liu, Y., et al.: Periodic event-triggered adaptive control for attitude stabilization under input saturation. IEEE Trans. Circuits Syst. I Regul. Pap. 67, 249–258 (2019)

    Article  MathSciNet  Google Scholar 

  5. Kumar, S.V., Raja, R., Anthoni, S.M., et al.: Robust finite-time non-fragile sampled-data control for T-S fuzzy flexible spacecraft model with stochastic actuator faults. Appl. Math. Comput. 321, 483–497 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Chen, X.F., Song, Q.K.: State estimation for quaternion-valued neural networks with multiple time delays. IEEE Trans. Syst. Man Cybern. Syst. 49, 2278–2287 (2017)

    Article  Google Scholar 

  7. Liu, Y., Zhang, D.D., Lou, J.G., et al.: Stability analysis of quaternion-valued neural networks: decomposition and direct approaches. IEEE Trans. Neural Netw. Learn. Syst. 29, 4201–4211 (2017)

    Article  Google Scholar 

  8. Leo, S.D., Ducati, G.C.: Solving simple quaternionic differential equations. J. Math. Phys. 44, 2224–2233 (2003)

    Article  MathSciNet  Google Scholar 

  9. Campos, J., Mawhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Ann. Mat. 185, S109–S127 (2006)

    Article  MathSciNet  Google Scholar 

  10. Wilczyński, P.: Quaternionic-valued ordinary differential equations. The Riccati equation. J. Differ. Equ. 247, 2163–2187 (2009)

    Article  MathSciNet  Google Scholar 

  11. Zhang, X.: Global structure of quaternion polynomial differential equations. Commun. Math. Phys. 303, 301–316 (2011)

    Article  MathSciNet  Google Scholar 

  12. Kou, K.I., Xia, Y.H.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)

    Article  MathSciNet  Google Scholar 

  13. Kou, K.I., Liu, W.K., Xia, Y.H.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys. 60, 023510 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Kyrchei, I.: Linear differential systems over the quaternion skew field arXiv:1812.03397v1 (2018)

  15. Cheng, D., Kou, K.I., Xia, Y.H.: A unified analysis of linear quaternion dynamic equations on time scales. J. Appl. Anal. Comput. 8, 172–201 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Cai, Z.F., Kou, K.I.: Laplace transform: a new approach in solving linear quaternion differential equations. Math. Methods Appl. Sci. 41, 4033–4048 (2018)

    Article  MathSciNet  Google Scholar 

  17. Cai, Z.F., Kou, K.I.: Solving quaternion ordinary differential equations with two-sided coefficients. Qual. Theory Dyn. Syst. 17, 441–462 (2018)

    Article  MathSciNet  Google Scholar 

  18. Xia, Y.H., Kou, K.I., Liu, Y.: Theory and Applications of Quaternion-Valued Differential Equations. Science Press, Beijing (2021). ISBN 978-7-03-069056-2

  19. Chen, D., Fečkan, M., Wang, J.: On the stability of linear quaternion-valued differential equations. Qual. Theory Dyn. Syst. 21, Art. 9 (2022)

    Article  MathSciNet  Google Scholar 

  20. Chen, D., Fečkan, M., Wang, J.: Hyers-Ulam stability for linear quaternion-valued differential equations with constant coefficient. Rocky Mt. J. Math. (2021, Accepted)

  21. Suo, L.P., Fečkan, M., Wang, J.: Quaternion-valued linear impulsive differential equations. Qual. Theory Dyn. Syst. 20, Art. 33 (2021)

    Article  MathSciNet  Google Scholar 

  22. Cao, Y., Ramajayam, S., Sriraman, R., et al.: Leakage delay on stabilization of finite-time complex-valued BAM neural network: decomposition approach. Neurocomputing 463, 505–513 (2021)

    Article  Google Scholar 

  23. Jiang, B.X., Liu, Y., Kou, K.I., et al.: Controllability and observability of linear quaternion-valued systems. Acta Math. Sin. Engl. Ser. 36, 1299–1314 (2020)

    Article  MathSciNet  Google Scholar 

  24. Kalman, R.E.: On the general theory of control systems. IRE Trans. Autom. Control 4, 110 (1959)

    Article  Google Scholar 

  25. Ghiloni, R., Moretti, V., Perotti, A.: Continuous slice functional calculus in quaternion Hilbert spaces. Rev. Math. Phys. 25, 1–17 (2013)

    Article  Google Scholar 

  26. Rodman, L.: Topics in Quaternion Linear Algebra. Princeton University Press, Princeton (2014)

    Book  Google Scholar 

  27. Tobar, F.A., Mandic, D.P.: Quaternion reproducing kernel Hilbert spaces: existence and uniqueness conditions. IEEE Trans. Inf. Theory 60, 5736–5749 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhang, F.Z.: Quaternion and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  Google Scholar 

  29. Wang, J., Luo, Z.J., Fečkan, M.: Relative controllability of semilinear delay differential systems with linear parts defined by permutable matrices. Eur. J. Control. 38, 39–46 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. The authors thank the help from the editor too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (12161015), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Fečkan, M. & Wang, J. Investigation of Controllability and Observability for Linear Quaternion-Valued Systems from Its Complex-Valued Systems. Qual. Theory Dyn. Syst. 21, 66 (2022). https://doi.org/10.1007/s12346-022-00599-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00599-6

Keywords

Navigation