Skip to main content
Log in

A Characterization of Multiplicity-Preserving Global Bifurcations of Complex Polynomial Vector Fields

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

For the space of single-variable monic and centered complex polynomial vector fields of arbitrary degree d, it is proved that any bifurcation which preserves the multiplicity of equilibrium points admits a decomposition into a finite number of elementary bifurcations, and the elementary bifurcations are characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. For \(d=2\), there are technically no separatrices since infinity is not a pole. The results in this paper still hold in this case if we consider the trajectories through infinity as separatrices.

References

  1. Álvarez, M., Gasull, A., Prohens, R.: Topological classification of polynomial complex differential equations with all the critical points of center type. J. Differ. Equ. Appl. 16(5), 411–423 (2010)

    Article  Google Scholar 

  2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York (1973). (Original: Nakua, Moscow 1967)

    MATH  Google Scholar 

  3. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifurc. Chaos 16(11), 3127–3194 (2006)

    Article  MathSciNet  Google Scholar 

  4. Benzinger, H.E.: Plane autonomous systems with rational vector fields. Trans. Am. Math. Soc. 326(2), 465–483 (1991)

    Article  MathSciNet  Google Scholar 

  5. Benzinger, H.E.: Julia sets and differential equations. Proc. Am. Math. Soc. 117(4), 939–946 (1993)

    Article  MathSciNet  Google Scholar 

  6. Branner, B., Dias, K.: Classification of polynomial vector fields in one complex variable. J. Differ. Equ. Appl. 16(5), 463–517 (2010)

    Article  MathSciNet  Google Scholar 

  7. Brickman, L., Thomas, E.S.: Conformal equivalence of analytic flows. J. Differ. Equ. 25, 310–324 (1977)

    Article  MathSciNet  Google Scholar 

  8. Buff, X., Chéritat, A.: Ensembles de julia quadratiques de mesure de lebesgue strictement positive. C. R. Acad. Sci. Paris 341(11), 669–674 (2005)

    Article  MathSciNet  Google Scholar 

  9. Buff, X., Tan, L.: Dynamical convergence and polynomial vector fields. J. Differ. Geom. 77(1), 1–41 (2007)

    Article  MathSciNet  Google Scholar 

  10. Christopher, C., Rousseau, C.: The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point. Int. Math. Res. Not. 9, 2494–2558 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Dias, K.: Enumerating combinatorial classes of complex polynomial vector fields in \(\mathbb{C}\). Ergod. Theory Dyn. Syst. 33, 416–440 (2013)

    Article  MathSciNet  Google Scholar 

  12. Dias, K., Tan, L.: On parameter space of complex polynomial vector fields in \(\mathbb{C}\). J. Differ. Equ. 260, 628–652 (2016)

    Article  MathSciNet  Google Scholar 

  13. Douady, A., Estrada, F., Sentenac, P.: Champs de vecteurs polynomiaux sur \(\mathbb{C}\). Unpublished manuscript

  14. Fathi, A., Laudenbach, F., Poenaru, V.: Traveaux de thurston sur les surfaces. Asterisque, pp. 66–67 (1979)

  15. Gardiner, F.P., Hu, J.: Finite earthquakes and the associahedron. In: Teichmüller theory and moduli problems, pp. 179–194 (2010)

  16. Garijo, A., Gasull, A., Jarque, X.: Normal forms for singularities of one dimentional holomorphic vector fields. Electron. J. Differ. Equ. 2004(122), 1–7 (2004)

    MATH  Google Scholar 

  17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  18. Hájek, O.: Notes on meromorphic dynamical systems, I. Czech. Math. J. 16(1), 14–27 (1966)

    Article  MathSciNet  Google Scholar 

  19. Hájek, O.: Notes on meromorphic dynamical systems, II. Czech. Math. J. 16(1), 28–35 (1966)

    Article  MathSciNet  Google Scholar 

  20. Hájek, O.: Notes on meromorphic dynamical systems, III. Czech. Math. J. 16(1), 36–40 (1966)

    Article  MathSciNet  Google Scholar 

  21. Jenkins, J.: Univalent Functions. Springer, Berlin (1958)

    Book  Google Scholar 

  22. Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of third order. Can. J. Math. 56(2), 310–343 (2004)

    Article  MathSciNet  Google Scholar 

  23. Mardešić, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc. Math. J. 4, 455–498 (2004)

    Article  MathSciNet  Google Scholar 

  24. Muciño-Raymundo, J., Valero-Valdés, C.: Bifurcations of meromorphic vector fields on the Riemann sphere. Ergod. Theory Dyn. Syst. 15(6), 1211–1222 (1995)

    Article  MathSciNet  Google Scholar 

  25. Needham, D., King, A.: On meromorphic complex differential equations. Dyn. Stab. Syst. 9, 99–121 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Neumann, D.: Classification of continuous flows on 2-manifolds. Proc. Am. Math. Soc. 48(1), 73–81 (1975)

    Article  MathSciNet  Google Scholar 

  27. Oudkerk, R.: The parabolic implosion for \(f\_0(z)=z+z^{\nu +1}+o(z^{\nu +2})\). Ph.D. thesis, University of Warwick (1999)

  28. Rousseau, C.: Analytic moduli for unfoldings of germs of generic analytic diffeomorphims with a codimension \(k\) parabolic point. Ergod. Theory Dyn. Syst. 35, 274–292 (2015)

    Article  Google Scholar 

  29. Rousseau, C., Teyssier, L.: Analytical moduli for unfoldings of saddle-node vector fields. Mosc. Math. J. 8(3), 547–614 (2008)

    Article  MathSciNet  Google Scholar 

  30. Shishikura, M.: Bifurcation of parabolic fixed points. In: Lei, T. (ed.) The Mandelbrot Set, Theme and Variations. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  31. Sverdlove, R.: Vector fields defined by complex functions. J. Differ. Equ. 34, 427–439 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

There are many people to thank for patiently listening to various stages of this work and providing helpful suggestions. In particular, the author is indebted to Bodil Branner, Frederick Gardiner and the other participants in the Extremal Length seminar at CUNY Graduate Center, Christian Henriksen, Poul G. Hjorth, Louis Pedersen, and Tan Lei. The author would also like to express gratitude to the anonymous referee, whose thorough and thoughtful critiques have greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kealey Dias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by Fondation Idella, the Marie Curie European Union Research Training Network Conformal Structures and Dynamics (CODY), the Research Foundation of CUNY PSC-CUNY Cycle 44 (66148-00 44) and Cycle 47 (69510-00 47) Research Awards, the Bronx Community College Foundation Faculty Scholarship Grant 2016, and the Association for Women in Mathematics Travel Grant October 2019 Cycle (NSF 1642548).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, K. A Characterization of Multiplicity-Preserving Global Bifurcations of Complex Polynomial Vector Fields. Qual. Theory Dyn. Syst. 19, 90 (2020). https://doi.org/10.1007/s12346-020-00424-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-020-00424-y

Keywords

Mathematics Subject Classification

Navigation