Skip to main content
Log in

Singular Perturbations with Multiple Poles of the Simple Polynomials

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we study the dynamics of the following family of rational maps with one parameter:

$$\begin{aligned} f_\lambda (z)= z^n+\frac{\lambda ^2}{z^n-\lambda }, \end{aligned}$$

where \(n\ge 3\) and \(\lambda \in \mathbb {C}^*\). This family of rational maps can be viewed as a singular perturbations of the simple polynomial \(P_n(z)=z^n\). We give a characterization of the topological properties of the Julia sets of the family \(f_\lambda \) according to the dynamical behaviors of the orbits of the free critical points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The number \(\sqrt{6}/9\) in this inequality will be used in the construction of an example in next section.

  2. Although U and V are not domains in \(\mathbb {C}\), one can use a coordinate transformation to obtain a polynomial-like mapping since as a rational map, \(f_\lambda \) is holomorphic on whole \(\widehat{\mathbb {C}}\).

References

  1. Beardon, A.F.: Iteration of rational functions, graduate texts in mathematics, vol. 132. Springer, New York (1991)

    Book  Google Scholar 

  2. Blanchard, P., Devaney, R.L., Garijo, A., Marotta, S.M., Russell, E.D.: The rabbit and other Julia sets wrapped in Sierpiński carpets. In: Complex dynamics: families and friends, Ed. D. Schleicher, A., Peters, K., Wellesley, M.A., pp. 277–295 (2009)

  3. Blanchard, P., Devaney, R.L., Look, D.M., Seal, P., Shapiro, Y.: Sierpinski-curve Julia sets and singular perturbations of complex polynomials. Ergod. Theory Dyn. Syst. 25, 1047–1055 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carleson, L., Gamelin, T.W.: Complex dynamics. Springer, New York (1993)

    Book  MATH  Google Scholar 

  5. Devaney, R.L.: Singular perturbations of complex polynomials. Bull. Am. Math. Soc. 50, 391–429 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Devaney, R.L., Fagella, N., Garijo, A., Jarque, X.: Sierpiński curve Julia sets for quadratic rational maps. Ann. Acad. Sci. Fenn. Math. 39, 3–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Devaney, R.L., Look, D.M., Uminsky, D.: The escape trichotomy for singularly perturbed rational maps. Indiana Univ. Math. J. 54, 1621–1634 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Devaney, R.L., Russell, E.D.: Connectivity of Julia sets for singularly perturbed rational maps, chaos, CNN, memristors and beyond, pp. 239–245. World Scientific, Singapore (2013)

    Book  Google Scholar 

  9. Devaney, R.L., Marotta, S.M.: Evolution of the McMullen domain for singularly perturbed rational maps. Topo. Proc. 32, 301–320 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Douady, A., Hubbard, J.H.: On the dynamics of polynomial-like mappings. Ann. Sci. Ec. Norm. Sup. 18, 287–343 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, J., Yang, F.: On the dynamics of a family of singularly perturbed rational maps. J. Math. Anal. Appl. 424, 104–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Garijo, A., Godillon, S.: On McMullen-like mappings. J. Fractal Geom. 2, 249–279 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Garijo, A., Marotta, S.M., Russell, E.D.: Singular perturbations in the quadratic family with multiple poles. J. Differ. Equ. Appl. 19, 124–145 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jang, H.G., Steinmetz, N.: On the dynamics of the rational family \(f_t(z)=-t(z^2-2)^2/(4z^2-4)\). Comput. Methods Funct. Theory 12, 1–17 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kozlovski, O., van Strien, S.: Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials. Proc. Lond. Math. Soc. 99, 275–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kozma, R.T., Devaney, R.L.: Julia sets converging to filled quadratic Julia sets. Ergod. Theory Dyn. Syst. 34, 171–184 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Milnor, J.: Geometry and dynamics of quadratic rational maps, with an appendix by the author and Tan Lei. Exp. Math. 2, 37–83 (1993)

    Article  MATH  Google Scholar 

  18. Milnor, J.: Dynamics in one complex variable. Annals of mathematics studies, vol. 160, 3rd edn. Princeton Univ. Press, Princeton (2006)

    Google Scholar 

  19. Peherstorfer, F., Stroh, C.: Connectedness of Julia sets of rational functions. Comput. Methods Funct. Theory 1, 61–79 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pilgrim, K., Tan, L.: Rational maps with disconnected Julia sets. Astérisque 261, 349–383 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Qiu, W., Wang, X., Yin, Y.: Dynamics of McMullen maps. Adv. Math. 229, 2525–2577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Qiu, W., Yang, F., Yin, Y.: Rational maps whose Julia sets are Cantor circles. Ergod. Theory Dyn. Syst. 35, 499–529 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qiu, W., Yin, Y.: Proof of the Branner-Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A 52, 45–65 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Steinmetz, N.: On the dynamics of the McMullen family \(R(z)=z^m+\lambda /z^\ell \). Conform. Geom. Dyn. 10, 159–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Steinmetz, N.: Sierpiński and non-Sierpiński curve Julia sets in families of rational maps. J. Lond. Math. Soc. 78, 290–304 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Whyburn, G.T.: Topological characterization of the Sierpiński curve. Fund. Math. 45, 320–324 (1958)

    MathSciNet  MATH  Google Scholar 

  27. Xiao, Y., Qiu, W.: The rational maps \(F_{\lambda }(z)=z^m+\lambda /z^d\) have no Herman rings. Proc. Indian Acad. Math. Sci. 120, 403–407 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao, Y., Qiu, W., Yin, Y.: On the dynamics of generalized McMullen maps. Ergod. Theory Dyn. Syst. 34, 2093–2112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xiao, Y., Yang, F.: Singular perturbations of the unicritical polynomials with two parameters, Ergod. Theory Dyn. Syst. Available on doi:10.1017/etds.2015.114, (2016)

  30. Yang, F.: Rational maps without Herman rings. Proc. Amer. Math. Sci. arXiv:1310.2802 (to appear)

Download references

Acknowledgments

The first author is supported by the NSFC (Nos. 11301165, 11371126, 11571099) and the program of CSC (2015/2016). He also wants to acknowledge the Department of Mathematics, Graduate School of the City University of New York for its hospitality during his visit in 2015/2016. The second author is supported by the NSFC (No. 11401298) and the NSF of Jiangsu Province (No. BK20140587). We would like to thank the referee for careful reading and useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Yang, F. Singular Perturbations with Multiple Poles of the Simple Polynomials. Qual. Theory Dyn. Syst. 16, 731–747 (2017). https://doi.org/10.1007/s12346-016-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12346-016-0205-0

Keywords

Mathematics Subject Classification

Navigation