Skip to main content
Log in

Genetic Evidence Supporting a Causal Association Between mTOR-Dependent EIF-4E Circulating Protein Level and Osteoporosis

  • Original Research
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

The mechanistic target of rapamycin (mTOR) regulates bone homeostasis, a crucial factor in osteoporosis (OP) development. However, most research is based on observational studies, and the causality remains uncertain. Therefore, we analyzed two samples of mendelian randomization (MR) to determine whether there is a causal relationship between mTOR-dependent circulating proteins and OP.

Methods

Mendelian weighting (weighted median [WM], inverse variance weighting [IVW], and MR-Egger regression) were applied to analyze the causality between bone phenotypes (bone mineral density [BMD] in forearm, femoral neck, lumbar spine, and heel) and mTOR-dependent circulating proteins (RP-S6K, 4EBP, EIF-4E, EIF-4A, and EIF-4G). Horizontal pleiotropy and heterogeneities were detected using Cochran’s Q test, MR-Pleiotropy RE-Sidual Sum and Outlier (MR-PRESSO), and “leave-one-out” analysis. The proteomics-GWAS INTERVAL study was used to select the instrumental variables (IVs) for mTOR proteins.

Results

As phenotypes for OP, estimations of BMD were taken in four different sites: forearm (FA) (n = 8143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). Based on IVW analysis, EIF4E is causally related to FA-BMD (OR = 0.938, 95% CI 0.887, 0.991, p = 0.024) but not to BMD elsewhere.

Conclusion

MR analysis revealed a causal relationship between EIF-4E and FA-BMD, which may provide new insights into the underlying pathogenesis of OP and a new therapeutic target for OP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

These data were derived from the following resources available in the public websites: the exposure data for mTOR-dependent circulating proteins (https://www.phpc.cam.ac.uk/ceu/proteins/), and the outcome data for BMD (https://gwas.mrcieu.ac.uk/datasets/).

References

  1. Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet (London, England). 2019;393(10169):364–76.

    CAS  PubMed  Google Scholar 

  2. Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med. 2017;167(3):17–32.

    Google Scholar 

  3. Holroyd C, Cooper C, Dennison E. Epidemiology of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2008;22(5):671–85.

    PubMed  Google Scholar 

  4. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75.

    PubMed  Google Scholar 

  5. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, Oden A, Zethraeus N, Pfleger B, Khaltaev N. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9.

    PubMed  Google Scholar 

  6. Jeyabalan J, Shah M, Viollet B, Chenu C. AMP-activated protein kinase pathway and bone metabolism. J Endocrinol. 2012;212(3):277–90.

    CAS  PubMed  Google Scholar 

  7. Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;168(6):960–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu DM, Zhao L, Liu TT, Jiao PL, Zhao DD, Shih MS, Tao B, Sun LH, Zhao HY, Liu JM. Rictor/mTORC2 loss in osteoblasts impairs bone mass and strength. Bone. 2016;90:50–8.

    CAS  PubMed  Google Scholar 

  9. Zhan JK, Wang YJ, Wang Y, Wang S, Tan P, Huang W, Liu YS. The mammalian target of rapamycin signalling pathway is involved in osteoblastic differentiation of vascular smooth muscle cells. Can J Cardiol. 2014;30(5):568–75.

    PubMed  Google Scholar 

  10. Roman B, Montei C, Zhang L, Biswas P, Donofrio R, Xu S, Zhang Y, Liu B, Li K, Huang B, Yan B, Zhang Z, Liang K, Jia C, Lin J, Zeng C, Cai D, Jin D, Jiang Y, Bai X. Activation of mTORC1 in B lymphocytes promotes osteoclast formation via regulation of β-catenin and RANKL/OPG. J AOAC Int. 2016;31(7):1320–33.

    Google Scholar 

  11. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    CAS  PubMed  Google Scholar 

  12. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gómez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellström D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren Ö, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussière J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb-Anastasi A, Åkesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey-Smith G, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JB, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert-Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526(7571):112–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris JA, Kemp JP. An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet. 2019;51(2):258–66.

    CAS  PubMed  Google Scholar 

  14. Tang Y. Absence of causal association between Vitamin D and bone mineral density across the lifespan: a Mendelian randomization study. Nat Genet. 2022;12(1):10408.

    CAS  Google Scholar 

  15. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, Burgess S, Jiang T, Paige E, Surendran P, Oliver-Williams C, Kamat MA, Prins BP, Wilcox SK, Zimmerman ES, Chi A, Bansal N, Spain SL, Wood AM, Morrell NW, Bradley JR, Janjic N, Roberts DJ, Ouwehand WH, Todd JA, Soranzo N, Suhre K, Paul DS, Fox CS, Plenge RM, Danesh J, Runz H, Butterworth AS. Genomic atlas of the human plasma proteome. Sci Rep. 2018;558(7708):73–9.

    CAS  Google Scholar 

  16. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Didelez V, Sheehan N. Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res. 2007;16(4):309–30.

    PubMed  Google Scholar 

  18. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.

    PubMed  PubMed Central  Google Scholar 

  19. Holmes MV, Ala-Korpela M, Smith GD. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat Rev Cardiol. 2017;14(10):577–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hemani G, Zheng J. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7: e34408.

    PubMed  PubMed Central  Google Scholar 

  21. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.

    PubMed  PubMed Central  Google Scholar 

  22. Hocking LJ, Whitehouse C, Helfrich MH. Autophagy: a new player in skeletal maintenance? J Immunol Res. 2012;27(7):1439–47.

    CAS  Google Scholar 

  23. Zhang L, Guo YF, Liu YZ, Liu YJ, Xiong DH, Liu XG, Wang L, Yang TL, Lei SF, Guo Y, Yan H, Pei YF, Zhang F, Papasian CJ, Recker RR, Deng HW. Pathway-based genome-wide association analysis identified the importance of regulation-of-autophagy pathway for ultradistal radius BMD. J Bone Miner Res. 2010;25(7):1572–80.

    PubMed  PubMed Central  Google Scholar 

  24. Sugatani T, Hruska KA. Akt1/Akt2 and mammalian target of rapamycin/Bim play critical roles in osteoclast differentiation and survival, respectively, whereas Akt is dispensable for cell survival in isolated osteoclast precursors. J Biol Chem. 2005;280(5):3583–9.

    CAS  PubMed  Google Scholar 

  25. Darcy A, Meltzer M, Miller J, Lee S, Chappell S, Ver Donck K, Montano M. A novel library screen identifies immunosuppressors that promote osteoblast differentiation. Bone. 2012;50(6):1294–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21(6):369–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol CB. 1997;7(4):261–9.

    CAS  PubMed  Google Scholar 

  28. Huang J, Manning BD. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans. 2009;37(Pt 1):217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169(3):381–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Wen HY, Wang J. Low-dose sirolimus immunoregulation therapy in patients with active rheumatoid arthritis: a 24-week follow-up of the randomized, open-label, parallel-controlled trial. J Immunol Res. 2019;2019:7684352.

    PubMed  PubMed Central  Google Scholar 

  32. Beck N. Validation of modifications to the Soleris® E. coli method for detection and threshold determination of Escherichia coli in select foods: level 3 modification to AOAC performance tested method SM 101101. Nat Commun. 2022;105(2):483–91.

    Google Scholar 

  33. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. J Immunol Res. 2020;2020:6910312.

    Google Scholar 

  34. Takayanagi H. Osteoimmunology and the effects of the immune system on bone. Nat Rev Rheumatol. 2009;5(12):667–76.

    CAS  PubMed  Google Scholar 

  35. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Biomed Res Int. 1999;96(7):3540–5.

    CAS  Google Scholar 

  36. Takayanagi H, Sato K, Takaoka A, Taniguchi T. Interplay between interferon and other cytokine systems in bone metabolism. Immunol Rev. 2005;208:181–93.

    CAS  PubMed  Google Scholar 

  37. Ono T, Takayanagi H. Osteoimmunology in bone fracture healing. Curr Osteoporos Rep. 2017;15(4):367–75.

    PubMed  Google Scholar 

  38. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev. 2017;97(4):1295–349.

    CAS  PubMed  Google Scholar 

  39. Zaiss MM, Axmann R, Zwerina J, Polzer K, Gückel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G. Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum. 2007;56(12):4104–12.

    CAS  PubMed  Google Scholar 

  40. Runyan CE, Liu Z, Schnaper HW. Phosphatidylinositol 3-kinase and Rab5 GTPase inversely regulate the Smad anchor for receptor activation (SARA) protein independently of transforming growth factor-β1. J Biol Chem. 2012;287(43):35815–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Blagden SP, Willis AE. The biological and therapeutic relevance of mRNA translation in cancer. Nat Rev Clin Oncol. 2011;8(5):280–91.

    CAS  PubMed  Google Scholar 

  42. Iezaki T, Horie T, Fukasawa K, Kitabatake M, Nakamura Y, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Manabe T, Ishigaki Y, Ohno M, Hinoi E. Translational control of Sox9 RNA by mTORC1 contributes to skeletogenesis. Stem Cell Rep. 2018;11(1):228–41.

    CAS  Google Scholar 

  43. Li S, Fu J, Lu C, Mapara MY, Raza S, Hengst U, Lentzsch S. Elevated translation initiation factor eIF4E is an attractive therapeutic target in multiple myeloma. J Exp Clin Cancer Res CR. 2016;15(4):711–9.

    Google Scholar 

  44. Zuo D, Shogren KL, Zang J, Jewison DE, Waletzki BE, Miller AL 2nd, Okuno SH, Cai Z, Yaszemski MJ, Maran A. Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells. J Exp Clin Cancer Res. 2018;37(1):244.

    PubMed  PubMed Central  Google Scholar 

  45. Volta V, Pérez-Baos S. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun. 2021;12(1):6979.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng T, Zhang SX, Wang J, Qiao J, Chang MJ, Niu HQ, Liu GY, Li XF. Abnormalities of peripheral lymphocyte subsets in rheumatoid arthritis patients complicated with osteoporosis. Rheumatol Ther. 2022;9(4):1049–59.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the GEFOS for BMD GWAS summary statistics and the proteomics-GWAS INTERVAL study for releasing the mTOR-dependent circulating proteins summary statistics.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82001740), the Natural Science Foundation of Shanxi Province (No. 202203021221269), and the Graduate Education Innovation Program of Shanxi Province (2021Y357). The journal’s Rapid Service Fee was funded by the authors.

Author information

Authors and Affiliations

Authors

Contributions

Ting Cheng and Yao-Chen Zhang: Methodology, Software, Writing-Original Draft; Ke-Yi Fan: Investigation; Jing-Xi Hu and Qian Wang: Visualization; Qi Wang, Liu Liu, He-Yi Zhang, Yao-Pu Hou: Data Curation; Xiao-Feng Li: Conceptualization; Sheng-Xiao Zhang: Supervision, Writing- Review & Editing. This article is authored by individuals who meet the International Committee of Medical Journal Editors (ICMJE) criteria, take responsibility for the authenticity of the work, and have provided their consent for the publication of this version.

Corresponding author

Correspondence to Sheng-Xiao Zhang.

Ethics declarations

Conflict of Interest

Ting Cheng, Yao-Chen Zhang, Ke-Yi Fan, Jing-Xi Hu, Qian Wang, Qi Wang, Liu Liu, He-Yi Zhang, Yao-Pu Hou, Xiao-Feng Li, Sheng-Xiao Zhang have no conflicts of interest to disclose.

Ethical Approval

The study was performed in accordance with the Helsinki Declaration of 1964 and its later amendments. Patient consent for this study was not necessary because the study was non-interventional and data were de-identified.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1474 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, T., Zhang, YC., Fan, KY. et al. Genetic Evidence Supporting a Causal Association Between mTOR-Dependent EIF-4E Circulating Protein Level and Osteoporosis. Adv Ther 40, 4987–4998 (2023). https://doi.org/10.1007/s12325-023-02676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-023-02676-x

Keywords

Navigation