Skip to main content
Log in

Study on the Relationship Between Differentially Expressed Proteins in Breast Cancer and Lymph Node Metastasis

  • Original Research
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

Lymph node metastasis is a cause of poor prognosis in breast cancer. Mass spectrometry-based proteomics aims to map the protein landscapes of biological samples and profile tumors more comprehensively. Here, proteomics was employed to identify differentially expressed proteins (DEPs) that were associated with lymph node metastasis.

Methods

Tandem mass tag (TMT) quantitative proteomic approaches were applied for extensive profiling of conditioned medium of MDA-MB-231 and MCF7 cell lines and serums of patients who did or did not have lymph node metastasis, and DEPs were analyzed by bioinformatics. Furthermore, potential secreted or membrane proteins MUC5AC, ITGB4, CTGF, EphA2, S100A4, PRDX2, and PRDX6 were selected for verification in 114 tissue microarray samples of breast cancer using the immunohistochemical method. The relevant data was analyzed and processed by independent sample t test, chi-square test, or Fisher’s exact test using SPSS 22.0 software.

Results

In the conditioned medium of MDA-MB-231 cell lines, 154 proteins were upregulated, while 136 were downregulated compared to those of MCF7. In the serum of patients with breast cancer and lymph node metastasis, 17 proteins were upregulated, and 5 proteins were downregulated compared to those without lymph node metastasis. Furthermore, according to tissue verification, CTGF, EphA2, S100A4, and PRDX2 were associated with breast cancer lymph node metastasis.

Conclusion

Our study provides a new perspective for the understanding of the role of DEPs (especially CTGF, EphA2, S100A4, and PRDX2) in the development and metastasis of breast cancer. They could become potential diagnostic and prognostic biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  3. Cunnick GH, Jiang WG, Douglas-Jones T, et al. Lymphangiogenesis and lymph node metastasis in breast cancer. Mol Cancer. 2008;7:23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ureyen O, Cavdar DK, Adibelli ZH, et al. Axillary metastasis in clinically node-negative breast cancer. J Egypt Natl Canc Inst. 2018;30(4):159–63.

    Article  PubMed  Google Scholar 

  5. Xiao M, Yang S, Meng F, et al. LAPTM4B predicts axillary lymph node metastasis in breast cancer and promotes breast cancer cell aggressiveness in vitro. Cell Physiol Biochem. 2017;41(3):1072–82.

    Article  CAS  PubMed  Google Scholar 

  6. Ma X, Yang X, Yang W, Shui R. Prognostic value of extranodal extension in axillary lymph node-positive breast cancer. Sci Rep. 2021;11(1):9534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morrow M. Personalizing extent of breast cancer surgery according to molecular subtypes. Breast. 2013;22(Suppl 2):S106–9.

    Article  PubMed  Google Scholar 

  8. Shiino S, Matsuzaki J, Shimomura A, et al. Serum miRNA-based prediction of axillary lymph node metastasis in breast cancer. Clin Cancer Res. 2019;25(6):1817–27.

    Article  CAS  PubMed  Google Scholar 

  9. Bose U, Wijffels G, Howitt CA, et al. Proteomics: tools of the trade. Adv Exp Med Biol. 2019;1073:1–22.

    Article  CAS  PubMed  Google Scholar 

  10. Monti C, Zilocchi M, Colugnat I, et al. Proteomics turns functional. J Proteomics. 2019;198:36–44.

    Article  CAS  PubMed  Google Scholar 

  11. Gajbhiye A, Dabhi R, Taunk K, et al. Multipronged quantitative proteomics reveals serum proteome alterations in breast cancer intrinsic subtypes. J Proteomics. 2017;163:1–13.

    Article  CAS  PubMed  Google Scholar 

  12. Yigitbasi T, Calibasi-Kocal G, Buyukuslu N, et al. An efficient biomarker panel for diagnosis of breast cancer using surface-enhanced laser desorption ionization time-of-flight mass spectrometry. Biomed Rep. 2018;8(3):269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mueller C, Haymond A, Davis JB, et al. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev Proteomics. 2018;15(2):131–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang J, Tang N, Zhao Y, et al. Global phosphoproteomic analysis reveals significant metabolic reprogramming in the termination of liver regeneration in mice. J Proteome Res. 2020;19(4):1788–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao X, Zhang L, Zhou P, et al. Tandem mass tag-based quantitative proteome analysis of porcine deltacoronavirus (PDCoV)-infected LLC porcine kidney cells. ACS Omega. 2020;5(35):21979–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen ST, Pan TL, Juan HF, et al. Breast tumor microenvironment: proteomics highlights the treatments targeting secretome. J Proteome Res. 2008;7(4):1379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kulasingam V, Diamandis EP. Proteomics analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol Cell Proteomics. 2007;6(11):1997–2011.

    Article  CAS  PubMed  Google Scholar 

  18. Liotta LA, Ferrari M, Petricoin E. Clinical proteomics: written in blood. Nature. 2003;425(6961):905.

    Article  CAS  PubMed  Google Scholar 

  19. Mange A, Dimitrakopoulos L, Soosaipillai A, et al. An integrated cell line-based discovery strategy identified follistatin and kallikrein 6 as serum biomarker candidates of breast carcinoma. J Proteomics. 2016;142:114–21.

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Son S, Ko Y, et al. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene. 2021;40(15):2667–81.

    Article  CAS  PubMed  Google Scholar 

  21. Takigawa M. An early history of CCN2/CTGF research: the road to CCN2 via hcs24, ctgf, ecogenin, and regenerin. J Cell Commun Signal. 2018;12(1):253–64.

    Article  PubMed  Google Scholar 

  22. Kim B, Kim H, Jung S, et al. A CTGF-RUNX2-RANKL axis in breast and prostate cancer cells promotes tumor progression in bone. J Bone Miner Res. 2020;35(1):155–66.

    Article  CAS  PubMed  Google Scholar 

  23. Wells JE, Howlett M, Cole CH, et al. Deregulated expression of connective tissue growth factor (CTGF/CCN2) is linked to poor outcome in human cancer. Int J Cancer. 2015;137(3):504–11.

    Article  CAS  PubMed  Google Scholar 

  24. Niu J, Ma J, Guan X, et al. Correlation between Doppler ultrasound blood flow parameters and angiogenesis and proliferation activity in breast cancer. Med Sci Monit. 2019;25:7035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellinger JW, Schomel F, Buse JV, et al. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep. 2020;10(1):17889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okuyama T, Sakamoto R, Kumagai K, et al. EPHA2 antisense RNA modulates EPHA2 mRNA levels in basal-like/triple-negative breast cancer cells. Biochimie. 2020;179:169–80.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang T, Li J, Ma X, et al. Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine. 2018;31:276–86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mitra D, Bhattacharyya S, Alam N, et al. Phosphorylation of EphA2 receptor and vasculogenic mimicry is an indicator of poor prognosis in invasive carcinoma of the breast. Breast Cancer Res Treat. 2020;179(2):359–70.

    Article  CAS  PubMed  Google Scholar 

  29. Anderton M, van der Meulen E, Blumenthal MJ, et al. The role of the Eph receptor family in tumorigenesis. Cancers (Basel). 2021;13(2):206.

    Article  CAS  PubMed  Google Scholar 

  30. Zhou Y, Sakurai H. Emerging and diverse functions of the EphA2 noncanonical pathway in cancer progression. Biol Pharm Bull. 2017;40(10):1616–24.

    Article  CAS  PubMed  Google Scholar 

  31. Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene. 2021;40(14):2483–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res. 2020;1867(6): 118677.

    Article  CAS  PubMed  Google Scholar 

  33. Wen X, Yu X, Tian Y, et al. Quantitative shear wave elastography in primary invasive breast cancers, based on collagen-S100A4 pathology, indicates axillary lymph node metastasis. Quant Imaging Med Surg. 2020;10(3):624–33.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Donato R, Cannon BR, Sorci G, et al. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Geng YH, Yang H, et al. Extracellular ATP drives breast cancer cell migration and metastasis via S100A4 production by cancer cells and fibroblasts. Cancer Lett. 2018;430:1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Ismail TM, Fernig DG, Rudland PS, et al. The basic C-terminal amino acids of calcium-binding protein S100A4 promote metastasis. Carcinogenesis. 2008;29(12):2259–66.

    Article  CAS  PubMed  Google Scholar 

  37. Hellinger JW, Huchel S, Goetz L, et al. Inhibition of CYR61-S100A4 axis limits breast cancer invasion. Front Oncol. 2019;9:1074.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Yang S, Zhou H, et al. PRDX2 promotes the proliferation and metastasis of non-small cell lung cancer in vitro and in vivo. Biomed Res Int. 2020;2020:8359860.

    PubMed  PubMed Central  Google Scholar 

  39. Wang G, Zhong WC, Bi YH, et al. The prognosis of peroxiredoxin family in breast cancer. Cancer Manage Res. 2019;11:9685–99.

    Article  CAS  Google Scholar 

  40. Kurono S, Kaneko Y, Matsuura N, et al. Identification of potential breast cancer markers in nipple discharge by protein profile analysis using two-dimensional nano-liquid chromatography/nanoelectrospray ionization-mass spectrometry. Proteomics Clin Appl. 2016;10(5):605–13.

    Article  CAS  PubMed  Google Scholar 

  41. Stresing V, Baltziskueta E, Rubio N, et al. Peroxiredoxin 2 specifically regulates the oxidative and metabolic stress response of human metastatic breast cancer cells in lungs. Oncogene. 2013;32(6):724–35.

    Article  CAS  PubMed  Google Scholar 

  42. Liu FJ, Wang XB, Cao AG. Screening and functional analysis of a differential protein profile of human breast cancer. Oncol Lett. 2014;7(6):1851–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Leary PC, Terrile M, Bajor M, et al. Peroxiredoxin-1 protects estrogen receptor α from oxidative stress-induced suppression and is a protein biomarker of favorable prognosis in breast cancer. Breast Cancer Res. 2014;16(4):R79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cooper J, Giancotti FG. Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell. 2019;35(3):347–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sung JS, Kang CW, Kang S, et al. ITGB4-mediated metabolic reprogramming of cancer-associated fibroblasts. Oncogene. 2020;39(3):664–76.

    Article  CAS  PubMed  Google Scholar 

  47. Alimirzaie S, Bagherzadeh M, Akbari MR. Liquid biopsy in breast cancer: a comprehensive review. Clin Genet. 2019;95(6):643–60.

    Article  CAS  PubMed  Google Scholar 

  48. Poulet G, Massias J, Taly V. Liquid biopsy: general concepts. Acta Cytol. 2019;63(6):449–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for the support from all fundings.

Funding

The study was funded by Medical Science and Technology Development Foundation, Nanjing Department of Health (YKK18083; ZKX20025). The Rapid Service Fee was funded by the authors.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Author Contributions

Yu-Lu Sun, Yi-Xin Zhao, Yi-Nan Guan, Xin You, Yin Zhang, Meng Zhang, Hong-Yan Wu, Wei-Jie Zhang and Yong-Zhong Yao contributed to the manuscript conception and design, statistical analysis, drafted previous versions of the manuscript, and read and approved the final manuscript.

Disclosures

Yu-Lu Sun, Yi-Xin Zhao, Yi-Nan Guan, Xin You, Yin Zhang, Meng Zhang, Hong-Yan Wu, Wei-Jie Zhang and Yong-Zhong Yao have nothing to disclose.

Compliance with Ethics Guidelines

This study was conducted in accordance with the Declaration of Helsinki and approved by the ethics committee of Nanjing Drum Tower Hospital (ethics committee approval number 2021-376). All participants signed informed consent to publish their data.

Data Availability

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Zhong Yao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YL., Zhao, YX., Guan, YN. et al. Study on the Relationship Between Differentially Expressed Proteins in Breast Cancer and Lymph Node Metastasis. Adv Ther 40, 4004–4023 (2023). https://doi.org/10.1007/s12325-023-02588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-023-02588-w

Keywords

Navigation