Skip to main content
Log in

Human Epididymis Protein 4 and Lewis y Enhance Chemotherapeutic Resistance in Epithelial Ovarian Cancer Through the p38 MAPK Pathway

  • Original Research
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Introduction

Ovarian cancer has a high mortality rate due to difficulties in early detection and chemotherapy resistance. Human epididymal protein 4 (HE4) has been adopted as a novel serum biomarker for early ovarian cancer diagnosis, and the presence of Lewis y antigen modifications on HE4 in ovarian cancer cell lines has been detected in previous studies. The aim of this study was to analyze the expression of HE4 and Lewis y antigen in human ovarian cancer in order to find a correlation between them, as well as with the clinical pathological parameters of patients with ovarian cancer.

Methods

Immunohistochemistry was used to detect the respective expression of these compounds in two patient groups (chemotherapy-resistant and chemotherapy-sensitive) containing a total of 95 patients. Then, a bioinformatic approach was adopted and online large sample databases (TCGA, CCLE, and GTEx; Metascape, Cytoscape) were used to explore the potential mechanisms of action of these compounds.

Results

The results of this study demonstrate that high HE4 and Lewis y expression could be used as markers for chemotherapy resistance and poor prognosis in patients with ovarian cancer. These two expression events were widely correlated in various cancer tissues and are thought to act by activating the p38 mitogen-activated protein kinases (MAPK) pathway and inducing Vascular Endothelial Growth Factor A (VEGFA), Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Early Growth Response 1 (EGR1), and Hypoxia-Inducible Factor 1-Alpha (HIFI1A), thereby promoting malignant biological behavior and resistance in ovarian cancer.

Conclusions

These findings not only reveal the possible mechanism by which HE4 and Lewis y antigen affect ovarian cancer but also identify a four-gene signature that could be very useful in ovarian cancer detection and/or the development of new targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3–14.

    Article  PubMed  Google Scholar 

  2. Hellstrom I, Raycraft J, Hayden-Ledbetter M, et al. The HE4 (WFDC2) protein is a biomarker for ovarian carcinoma. Cancer Res. 2003;63(13):3695–700.

    PubMed  Google Scholar 

  3. Drapkin R, von Horsten HH, Lin Y, et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 2005;65(6):2162–9.

    Article  CAS  PubMed  Google Scholar 

  4. Scaletta G, Plotti F, Luvero D, et al. The role of novel biomarker HE4 in the diagnosis, prognosis and follow-up of ovarian cancer: a systematic review. Expert Rev Anticancer Ther. 2017;17(9):827–39.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang L, Chen Y, Wang K. Comparison of CA125, HE4, and ROMA index for ovarian cancer diagnosis. Curr Probl Cancer. 2019;43(2):135–44.

    Article  PubMed  Google Scholar 

  6. Dochez V, Caillon H, Vaucel E, Dimet J, Winer N, Ducarme G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J Ovarian Res. 2019;12(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kitamura K, Stockert E, Garin-Chesa P, et al. Specificity analysis of blood group Lewis-y (Le(y)) antibodies generated against synthetic and natural Le(y) determinants. Proc Natl Acad Sci U S A. 1994;91(26):12957–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hokke CH, Neeleman AP, Koeleman CA, van den Eijnden DH. Identification of an α3-fucosyltransferase and a novel α2-fucosyltransferase activity in cercariae of the schistosome Trichobilharzia ocellata: biosynthesis of the Fucα1→2Fucα1→3[Gal(NAc)β1→4]GlcNAc sequence. Glycobiology. 1998;8(4):393–406.

    Article  CAS  PubMed  Google Scholar 

  9. Dettke M, Palfi G, Loibner H. Activation-dependent expression of the blood group-related Jewis Y antigen on peripheral blood granulocytes. J Leukoc Biol. 2000;68(4):511–4.

    Article  CAS  PubMed  Google Scholar 

  10. Yan LM, Lin B, Zhu LC, et al. Enhancement of the adhesive and spreading potentials of ovarian carcinoma RMG-1 cells due to increased expression of integrin alpha5beta1 with the Lewis Y-structure on transfection of the alpha1,2-fucosyltransferase gene. Biochimie. 2010;92(7):852–7.

    Article  CAS  PubMed  Google Scholar 

  11. Li F, Lin B, Hao Y, et al. Lewis Y promotes growth and adhesion of ovarian carcinoma-derived RMG-I cells by upregulating growth factors. Int J Mol Sci. 2010;11(10):3748–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu J, Lin B, Hao Y, et al. Lewis y antigen promotes the proliferation of ovarian carcinoma-derived RMG-I cells through the PI3K/Akt signaling pathway. J Exp Clin Cancer Res. 2009;28:154.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhuang H, Gao J, Hu Z, Liu J, Liu D, Lin B. Co-expression of Lewis y antigen with human epididymis protein 4 in ovarian epithelial carcinoma. PLoS ONE. 2013;8(7):e68994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. NCCN Clinical Practice Guidelines in Oncology-Ovarian Cancer Including Fallopian Tube Cancer and Primary Peritoneal Cancer (Version 3.2021). .http://www.nccn.org. Accessed 9 Sept 2021

  15. Zhu LC, Gao J, Hu ZH, et al. Membranous expressions of Lewis y and CAM-DR-related markers are independent factors of chemotherapy resistance and poor prognosis in epithelial ovarian cancer. Am J Cancer Res. 2015;5(2):830–43.

    PubMed  PubMed Central  Google Scholar 

  16. Sinicrope FA, Ruan SB, Cleary KR, Stephens LC, Lee JJ, Levin B. bcl-2 and p53 oncoprotein expression during colorectal tumorigenesis. Cancer Res. 1995;55(2):237–41.

    CAS  PubMed  Google Scholar 

  17. Lu CD, Altieri DC, Tanigawa N. Expression of a novel antiapoptosis gene, survivin, correlated with tumor cell apoptosis and p53 accumulation in gastric carcinomas. Cancer Res. 1998;58(9):1808–12.

    CAS  PubMed  Google Scholar 

  18. Carithers LJ, Ardlie K, Barcus M, et al. A novel approach to high-quality postmortem tissue procurement: the GTEx project. Biopreserv Biobank. 2015;13(5):311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barretina J, Caponigro G, Stransky N, et al. Addendum: the cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2019;565(7738):E5–6.

    Article  CAS  PubMed  Google Scholar 

  20. Gao S, Zhu L, Feng H, et al. Gene expression profile analysis in response to alpha1,2-fucosyl transferase (FUT1) gene transfection in epithelial ovarian carcinoma cells. Tumour Biol. 2016;37(9):12251–62.

    Article  CAS  PubMed  Google Scholar 

  21. Zhu L, Guo Q, Jin S, et al. Analysis of the gene expression profile in response to human epididymis protein 4 in epithelial ovarian cancer cells. Oncol Rep. 2016;36(3):1592–604.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu L, Zhuang H, Wang H, et al. Overexpression of HE4 (human epididymis protein 4) enhances proliferation, invasion and metastasis of ovarian cancer. Oncotarget. 2016;7(1):729–44.

    Article  PubMed  Google Scholar 

  23. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang H, Zhu L, Gao J, Hu Z, Lin B. Promotive role of recombinant HE4 protein in proliferation and carboplatin resistance in ovarian cancer cells. Oncol Rep. 2015;33(1):403–12.

    Article  PubMed  Google Scholar 

  26. Zhuang H, Tan M, Liu J, et al. Human epididymis protein 4 in association with Annexin II promotes invasion and metastasis of ovarian cancer cells. Mol Cancer. 2014;13:243.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Deng L, Zhuang H, et al. Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int. 2019;19:161.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang A, Jin C, Tian X, Wang Y, Li H. Knockdown of HE4 suppresses aggressive cell growth and malignant progression of ovarian cancer by inhibiting the JAK/STAT3 pathway. Biol Open. 2019; 8(9):bio043570.

  29. Liu D, Kong D, Li J, et al. HE4 level in ascites may assess the ovarian cancer chemotherapeutic effect. J Ovarian Res. 2018;11(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee S, Choi S, Lee Y, Chung D, Hong S, Park N. Role of human epididymis protein 4 in chemoresistance and prognosis of epithelial ovarian cancer. J Obstet Gynaecol Res. 2017;43(1):220–7.

    Article  CAS  PubMed  Google Scholar 

  31. Aarenstrup Karlsen M, Hogdall C, Nedergaard L, et al. HE4 as a predictor of adjuvant chemotherapy resistance and survival in patients with epithelial ovarian cancer. APMIS. 2016;124(12):1038–45.

    Article  CAS  PubMed  Google Scholar 

  32. Moore RG, Hill EK, Horan T, et al. HE4 (WFDC2) gene overexpression promotes ovarian tumor growth. Sci Rep. 2014;4:3574.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nonaka M, Ma BY, Murai R, et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol. 2008;180(5):3347–56.

    Article  CAS  PubMed  Google Scholar 

  34. Tan M, Zhu L, Zhuang H, et al. Lewis Y antigen modified CD47 is an independent risk factor for poor prognosis and promotes early ovarian cancer metastasis. Am J Cancer Res. 2015;5(9):2777–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gao J, Hu Z, Liu J, et al. Expression of CD147 and Lewis y antigen in ovarian cancer and their relationship to drug resistance. Med Oncol. 2014;31(5):920.

    Article  PubMed  Google Scholar 

  36. Zhuang H, Tan M, Liu J, et al. The expression of annexin II and Lewis y antigen in ovarian epithelial tumors and the correlation between them. Tumour Biol. 2015;36(4):2343–9.

    Article  CAS  PubMed  Google Scholar 

  37. Cai M, Jin S, Deng L, et al. Lewis y antigen promotes p27 degradation by regulating ubiquitin-proteasome activity. Oncotarget. 2017;8(66):110064–76.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Burotto M, Chiou VL, Lee JM, Kohn EC. The MAPK pathway across different malignancies: a new perspective. Cancer. 2014;120(22):3446–56.

    Article  CAS  PubMed  Google Scholar 

  39. Ribeiro JR, Schorl C, Yano N, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hao Y, Zhu L, Yan L, et al. c-Fos mediates alpha1, 2-fucosyltransferase 1 and Lewis y expression in response to TGF-beta1 in ovarian cancer. Oncol Rep. 2017;38(6):3355–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shan X, Aziz F, Tian LL, Wang XQ, Yan Q, Liu JW. Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol. 2015;46(4):1667–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hybel TE, Dietrichs D, Sahana J, et al. Simulated microgravity influences VEGF, MAPK, and PAM signaling in prostate cancer cells. Int J Mol Sci. 2020;21(4):1263.

  43. Wang S, Xiao Z, Hong Z, et al. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA. Cancer Lett. 2018;439:78–90.

    Article  CAS  PubMed  Google Scholar 

  44. Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother. 2019;115:108957.

    Article  CAS  PubMed  Google Scholar 

  45. Cairns J, Ingle JN, Kalari KR, et al. The lncRNA MIR2052HG regulates ERalpha levels and aromatase inhibitor resistance through LMTK3 by recruiting EGR1. Breast Cancer Res. 2019;21(1):47.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun M, Nie FQ, Zang C, et al. The pseudogene DUXAP8 promotes non-small-cell lung cancer cell proliferation and invasion by epigenetically silencing EGR1 and RHOB. Mol Ther. 2017;25(3):739–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stamatakis K, Jimenez-Martinez M, Jimenez-Segovia A, et al. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget. 2015;6(37):39941–59.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Parra E, Gutierrez L, Ferreira J. Association of increased levels of TGF-beta1 and p14ARF in prostate carcinoma cell lines overexpressing Egr-1. Oncol Rep. 2014;32(5):2191–8.

    Article  CAS  PubMed  Google Scholar 

  49. Shajahan-Haq AN, Boca SM, Jin L, et al. EGR1 regulates cellular metabolism and survival in endocrine resistant breast cancer. Oncotarget. 2017;8(57):96865–84.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tang T, Zhu Q, Li X, et al. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. 2019;10(9):649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu Y, Li D, Wang Y, et al. Beta-defensin 2 and 3 promote bacterial clearance of Pseudomonas aeruginosa by inhibiting macrophage autophagy through downregulation of early growth response gene-1 and c-FOS. Front Immunol. 2018;9:211.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Parmakhtiar B, Burger RA, Kim JH, Fruehauf JP. HIF inactivation of p53 in ovarian cancer can be reversed by topotecan, restoring cisplatin and paclitaxel sensitivity. Mol Cancer Res. 2019;17(8):1675–86.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Qi Z, Yin H, Yang G. Interaction between p53 and Ras signaling controls cisplatin resistance via HDAC4- and HIF-1alpha-mediated regulation of apoptosis and autophagy. Theranostics. 2019;9(4):1096–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang W, Yuan W, Song J, Wang S, Gu X. LncRNA CPS1-IT1 suppresses EMT and metastasis of colorectal cancer by inhibiting hypoxia-induced autophagy through inactivation of HIF-1alpha. Biochimie. 2018;144:21–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ko CJ, Lan SW, Lu YC, et al. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene. 2017;36(32):4597–609.

    Article  CAS  PubMed  Google Scholar 

  56. Xu H, Lin F, Wang Z, et al. CXCR2 promotes breast cancer metastasis and chemoresistance via suppression of AKT1 and activation of COX2. Cancer Lett. 2018;412:69–80.

    Article  CAS  PubMed  Google Scholar 

  57. Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, et al. YAP1 and COX2 coordinately regulate urothelial cancer stem-like cells. Cancer Res. 2018;78(1):168–81.

    Article  CAS  PubMed  Google Scholar 

  58. Yu JL, Gao X. MicroRNA 1301 inhibits cisplatin resistance in human ovarian cancer cells by regulating EMT and autophagy. Eur Rev Med Pharmacol Sci. 2020;24(4):1688–96.

    PubMed  Google Scholar 

  59. Liang F, Ren C, Wang J, et al. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis. 2019;8(10):59.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Patel NH, Xu J, Saleh T, Wu Y, Lima S, Gewirtz DA. Influence of nonprotective autophagy and the autophagic switch on sensitivity to cisplatin in non-small cell lung cancer cells. Biochem Pharmacol. 1896;2020:113896.

    Google Scholar 

  61. Lin TY, Chan HH, Chen SH, et al. BIRC5/Survivin is a novel ATG12-ATG5 conjugate interactor and an autophagy-induced DNA damage suppressor in human cancer and mouse embryonic fibroblast cells. Autophagy. 2020;16(7):1296–313.

    Article  PubMed  Google Scholar 

  62. New J, Thomas SM. Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy. 2019;15(10):1682–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding

The present study was supported by the National Natural Science Foundation of China (grant nos. 81472437 and 81672590), National Natural Science Foundation of China Youth Science Foundation (No. 81602438), Doctoral start-up fund of Liaoning Province (Grant No. 201601133) and 345 Talent Project of Shengjing Hospital. The journal’s Rapid Service Fee was funded by the authors.

Authorship

All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.

Author Contributions

Jian Gao and Liancheng Zhu contributed equally to this work. Jian Gao and Liancheng Zhu conceived, designed the study, wrote and drafted the manuscript. Jian Gao and Huiyu Zhuang performed the immunohistochemical staining experiment and data analysis. Liancheng Zhu performed the bioinformatics analysis. Bei Lin provided fund support and reviewed the manuscript. All authors read and approved the final version of the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Compliance with Ethics Guidelines

The present study was approved by the Ethical Committee of Shengjing Hospital affiliated to China Medical University (number of approval 2021PS561K).

Disclosures

Jian Gao, Liancheng Zhu, Huiyu Zhuang and Bei Lin all confirm that they have no conflicts of interest to disclose.

Data Availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bei Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhu, L., Zhuang, H. et al. Human Epididymis Protein 4 and Lewis y Enhance Chemotherapeutic Resistance in Epithelial Ovarian Cancer Through the p38 MAPK Pathway. Adv Ther 39, 360–378 (2022). https://doi.org/10.1007/s12325-021-01941-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-021-01941-1

Keywords

Navigation