Skip to main content
Log in

Cardiac and Hemodynamic Benefits: Mode of Action of Ivabradine in Heart Failure

  • Review
  • Published:
Advances in Therapy Aims and scope Submit manuscript

Abstract

Heart failure has seen a number of therapeutic advances in recent years. Despite this, heart failure is still related to increasing rates of morbidity, repeated hospitalizations, and mortality. Ivabradine is a recent treatment option for heart failure. It has a mode of action that includes reduction in heart rate, and leads to improvement in outcomes related to heart failure mortality and morbidity, as demonstrated by the results of the SHIFT trial in patients with systolic heart failure, functional classes II and III on the New York Heart Association classification, and left ventricular ejection fraction ≤35%. These results are intriguing since many heart failure drugs reduce heart rate without such benefits, or with quite different effects, making it more difficult to understand the novelty of ivabradine in this setting. Many of the drugs used in heart failure modify heart rate, but most have other pathophysiological effects beyond their chronotropic action, which affect their efficacy in preventing morbidity and mortality outcomes. For instance, heart rate reduction at rest or exercise with ivabradine prolongs diastolic perfusion time, improves coronary blood flow, and increases exercise capacity. Another major difference is the increase in stroke volume observed with ivabradine, which may underlie its beneficial cardiac effects. Finally, there is mounting evidence from both preclinical and clinical studies that ivabradine has an anti-remodeling effect, improving left ventricular structures and functions. All together, these mechanisms have a positive impact on the prognosis of ivabradine-treated patients with heart failure, making a compelling argument for use of ivabradine in combination with other treatments.

Funding

Servier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med. 1987;316(23):1429–35.

  2. Pfeffer MA, Braunwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med. 1992;327(10):669–77.

    Article  CAS  PubMed  Google Scholar 

  3. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999;341(10):709–17.

    Article  CAS  PubMed  Google Scholar 

  4. CIBIS Investigators and Committees. A randomized trial of beta-blockade in heart failure. The Cardiac Insufficiency Bisoprolol Study (CIBIS). Circulation. 1994;90(4):1765–73.

  5. Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334(21):1349–55.

    Article  CAS  PubMed  Google Scholar 

  6. Bristow MR, Saxon LA, Boehmer J, et al. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004;350(21):2140–50.

    Article  CAS  PubMed  Google Scholar 

  7. Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med. 2005;352(15):1539–49.

    Article  CAS  PubMed  Google Scholar 

  8. Stewart S, Ekman I, Ekman T, Oden A, Rosengren A. Population impact of heart failure and the most common forms of cancer: a study of 1162309 hospital cases in Sweden (1988 to 2004). Circ Cardiovasc Qual Outcomes. 2010;3(6):573–80.

    Article  PubMed  Google Scholar 

  9. McMurray JJ, Pfeffer MA. Heart failure. Lancet. 2005;365(9474):1877–89.

    Article  PubMed  Google Scholar 

  10. Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled trial. Lancet. 2010;376(9744):875–85.

    Article  CAS  PubMed  Google Scholar 

  11. Borer JS, Bohm M, Ford I, et al. Effect of ivabradine on recurrent hospitalization for worsening heart failure in patients with chronic systolic heart failure: the SHIFT Study. Eur Heart J. 2012;33(22):2813–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111(21):2837–49.

    Article  PubMed  Google Scholar 

  13. Packer M. How should physicians view heart failure? The philosophical and physiological evolution of three conceptual models of the disease. Am J Cardiol. 1993;71(9):3C–11C.

    Article  CAS  PubMed  Google Scholar 

  14. Sandler H, Dodge HT. Left ventricular tension and stress in man. Circ Res. 1963;13:91–104.

    Article  CAS  PubMed  Google Scholar 

  15. Hood WP Jr, Rackley CE, Rolett EL. Wall stress in the normal and hypertrophied human left ventricle. Am J Cardiol. 1968;22(4):550–8.

    Article  PubMed  Google Scholar 

  16. Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Meerson FZ. On the mechanism of compensatory hyperfunction and insufficiency of the heart. Cor Vasa. 1961;31:61–77.

    Google Scholar 

  18. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med. 1990;322(22):1561–6.

    Article  CAS  PubMed  Google Scholar 

  19. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med. 1991;114(5):345–52.

    Article  CAS  PubMed  Google Scholar 

  20. Gunther S, Grossman W. Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation. 1979;59(4):679–88.

  21. Huber D, Grimm J, Koch R, Krayenbuehl HP. Determinants of ejection performance in aortic stenosis. Circulation. 1981;64(1):126–34.

    Article  CAS  PubMed  Google Scholar 

  22. Krayenbuehl HP, Hess OM, Ritter M, Monrad ES, Hoppeler H. Left ventricular systolic function in aortic stenosis. Eur Heart J. 1988;9(Suppl):E19–23.

    Article  Google Scholar 

  23. Katz AM. Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc Drugs Ther. 2002;16(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  24. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.

    Article  PubMed  Google Scholar 

  25. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–18.

    Article  PubMed  Google Scholar 

  26. Klabunde RE. Cardiovascular Physiology Concepts. 2nd ed. Philadelphia, PA: Lippincott Williams and Wilkins; 2012.

  27. Pereira-Barretto AC. Most heart failure patients die from pump failure. Am J Cardiovasc Drugs. 2015. (In press).

  28. Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet. 2014;383(9932):1933–43.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Heusch G. Heart rate and heart failure. Not a simple relationship. Circ J. 2011;75(2):229–36.

    Article  PubMed  Google Scholar 

  30. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.

    Article  CAS  PubMed  Google Scholar 

  31. Paulus WJ, Tschope C, Sanderson JE, et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007;28(20):2539–50.

    Article  PubMed  Google Scholar 

  32. Komajda M, Lam CS. Heart failure with preserved ejection fraction: a clinical dilemma. Eur Heart J. 2014;35(16):1022–32.

    Article  CAS  PubMed  Google Scholar 

  33. Komamura K. Similarities and differences between the pathogenesis and pathophysiology of diastolic and systolic heart failure. Cardiol Res Pract. 2013;2013:824135.

    PubMed Central  PubMed  Google Scholar 

  34. Chatterjee K, Massie B. Systolic and diastolic heart failure: differences and similarities. J Card Fail. 2007;13(7):569–76.

    Article  PubMed  Google Scholar 

  35. Dobre D, Borer JS, Fox K, et al. Heart rate: a prognostic factor and therapeutic target in chronic heart failure. The distinct roles of drugs with heart rate-lowering properties. Eur J Heart Fail. 2014;16(1):76–85.

    Article  CAS  PubMed  Google Scholar 

  36. Whitbeck MG, Charnigo RJ, Khairy P, et al. Increased mortality among patients taking digoxin—analysis from the AFFIRM Study. Eur Heart J. 2013;34(20):1481–8.

    Article  CAS  PubMed  Google Scholar 

  37. Freeman JV, Yang J, Sung SH, Hlatky MA, Go AS. Effectiveness and safety of digoxin among contemporary adults with incident systolic heart failure. Circ Cardiovasc Qual Outcomes. 2013;6(5):525–33.

    Article  PubMed  Google Scholar 

  38. DiFrancesco D. The contribution of the ‘pacemaker’ current (if) to generation of spontaneous activity in rabbit sino-atrial node myocytes. J Physiol. 1991;43423-40.

  39. Meiler SE, Boudoulas H, Unverferth DV, Leier CV. Diastolic time in congestive heart failure. Am Heart J. 1987;114(5):1192–8.

    Article  CAS  PubMed  Google Scholar 

  40. Colin P, Ghaleh B, Monnet X, et al. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am J Physiol Heart Circ Physiol. 2003;284(2):H676–82.

    Article  CAS  PubMed  Google Scholar 

  41. Colin P, Ghaleh B, Hittinger L, et al. Differential effects of heart rate reduction and beta-blockade on left ventricular relaxation during exercise. Am J Physiol Heart Circ Physiol. 2002;282(2):H672–9.

    Article  CAS  PubMed  Google Scholar 

  42. Custodis F, Schirmer SH, Baumhakel M, Heusch G, Bohm M, Laufs U. Vascular pathophysiology in response to increased heart rate. J Am Coll Cardiol. 2010;56(24):1973–83.

    Article  PubMed  Google Scholar 

  43. Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res. 1977;41(5):648–53.

    Article  CAS  PubMed  Google Scholar 

  44. Ferro G, Duilio C, Spinelli L, Liucci GA, Mazza F, Indolfi C. Relation between diastolic perfusion time and coronary artery stenosis during stress-induced myocardial ischemia. Circulation. 1995;92(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ferro G, Duilio C, Spinelli L, Spadafora M, Guarnaccia F, Condorelli M. Effects of beta blockade on the relation between heart rate and ventricular diastolic perfusion time during exercise in systemic hypertension. Am J Cardiol. 1991;68(10):1101–3.

    Article  CAS  PubMed  Google Scholar 

  46. Ferro G, Spinelli L, Duilio C, Spadafora M, Guarnaccia F, Condorelli M. Diastolic perfusion time at ischemic threshold in patients with stress-induced ischemia. Circulation. 1991;84(1):49–56.

    Article  CAS  PubMed  Google Scholar 

  47. Skalidis EI, Hamilos MI, Chlouverakis G, Zacharis EA, Vardas PE. Ivabradine improves coronary flow reserve in patients with stable coronary artery disease. Atherosclerosis. 2011;215(1):160–5.

    Article  CAS  PubMed  Google Scholar 

  48. Dedkov EI, Zheng W, Christensen LP, Weiss RM, Mahlberg-Gaudin F, Tomanek RJ. Preservation of coronary reserve by ivabradine-induced reduction in heart rate in infarcted rats is associated with decrease in perivascular collagen. Am J Physiol Heart Circ Physiol. 2007;293(1):H590–8.

    Article  CAS  PubMed  Google Scholar 

  49. Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol. 2008;153(8):1589–601.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Monnet X, Ghaleh B, Colin P, de Curzon OP, Giudicelli JF, Berdeaux A. Effects of heart rate reduction with ivabradine on exercise-induced myocardial ischemia and stunning. J Pharmacol Exp Ther. 2001;299(3):1133–9.

    CAS  PubMed  Google Scholar 

  51. Monnet X, Colin P, Ghaleh B, Hittinger L, Giudicelli JF, Berdeaux A. Heart rate reduction during exercise-induced myocardial ischaemia and stunning. Eur Heart J. 2004;25(7):579–86.

    Article  PubMed  Google Scholar 

  52. Heusch G. Pleiotropic action(s) of the bradycardic agent ivabradine: cardiovascular protection beyond heart rate reduction. Br J Pharmacol. 2008;155(7):970–1.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Gheorghiade M, Bonow RO. Chronic heart failure in the United States: a manifestation of coronary artery disease. Circulation. 1998;97(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ceconi C, Cargnoni A, Francolini G, Parinello G, Ferrari R. Heart rate reduction with ivabradine improves energy metabolism and mechanical function of isolated ischaemic rabbit heart. Cardiovasc Res. 2009;84(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  55. Komajda M, Hanon O, Hochadel M, et al. Contemporary management of octogenarians hospitalized for heart failure in Europe: Euro Heart Failure Survey II. Eur Heart J. 2009;30(4):478–86.

    Article  PubMed  Google Scholar 

  56. Volterrani M, Cice G, Caminiti G, et al. Effect of Carvedilol, Ivabradine or their combination on exercise capacity in patients with heart failure (the CARVIVA HF trial). Int J Cardiol. 2011;151(2):218–24.

    Article  PubMed  Google Scholar 

  57. Sarullo FM, Fazio G, Puccio D, et al. Impact of “off-label” use of ivabradine on exercise capacity, gas exchange, functional class, quality of life, and neurohormonal modulation in patients with ischemic chronic heart failure. J Cardiovasc Pharmacol Ther. 2010;15(4):349–55.

    Article  CAS  PubMed  Google Scholar 

  58. Mulder P, Barbier S, Chagraoui A, et al. Long-term heart rate reduction induced by the selective I(f) current inhibitor ivabradine improves left ventricular function and intrinsic myocardial structure in congestive heart failure. Circulation. 2004;109(13):1674–9.

    Article  CAS  PubMed  Google Scholar 

  59. Dillinger JG, aher V, itale C, et al. Impact of ivabradine on central aortic blood pressure and myocardial perfusion in patients with stable coronary artery disease. Hypertension. 2015. (In press).

  60. De Ferrari GM, Mazzuero A, Agnesina L, et al. Favourable effects of heart rate reduction with intravenous administration of ivabradine in patients with advanced heart failure. Eur J Heart Fail. 2008;10(6):550–5.

  61. Tardif JC, O’Meara E, Komajda M, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function: results from the SHIFT echocardiography substudy. Eur Heart J. 2011;32(20):2507–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Becher PM, Lindner D, Miteva K, et al. Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and beta-receptor blockade. Hypertension. 2012;59(5):949–57.

    Article  CAS  PubMed  Google Scholar 

  63. Mellin V, Bauer F, Richard V, et al. Short-term heart rate reduction induced by ivabradine improves systolic and diastolic cardiac functions in post-infarcted rats with established chronic heart failure. Abstract 2441. Eur Heart J. 2007;28 (suppl):388.

  64. Reil JC, Tardif JC, Ford I, et al. Selective heart rate reduction with ivabradine unloads the left ventricle in heart failure patients. J Am Coll Cardiol. 2013;62(21):1977–85.

    Article  CAS  PubMed  Google Scholar 

  65. Bagriy AE, Schukina EV, Samoilova OV, et al. Addition of ivabradine to beta-blocker improves exercise capacity in systolic heart failure patients in a prospective, open-label study. Adv Ther. 2015;32(2):108–19.

    Article  CAS  PubMed  Google Scholar 

  66. Zagidullin NS, Zulkarneev RH, Travnikova EO, Zagidullin SZ. Comparison of ivabradine and metoprolol tartrate impact on the heart variability in patients with angina pectoris. Cardiovascular System. 2014;2:9.

  67. Speranza L, Franceschelli S, Riccioni G. The biological effects of ivabradine in cardiovascular disease. Molecules. 2012;17(5):4924–35.

    Article  CAS  PubMed  Google Scholar 

  68. Sabbah HN, Gupta R, Wang M, et al. Heart rate reduction with ivabradine reduces activation of the renin–angiotensin–aldosterone system in dogs with chronic heart failure. J Am Coll Cardiol. 2011;57(17):E197.

    Article  Google Scholar 

  69. Milliez P, Messaoudi S, Nehme J, Rodriguez C, Samuel JL, Delcayre C. Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure. Am J Physiol Heart Circ Physiol. 2009;296:H435–41.

    Article  CAS  PubMed  Google Scholar 

  70. Ceconi C, Comini L, Suffredini S, et al. Heart rate reduction with ivabradine prevents the global phenotype of left ventricular remodeling. Am J Physiol Heart Circ Physiol. 2011;300(1):H366–73.

    Article  CAS  PubMed  Google Scholar 

  71. Fang Y, Debunne M, Vercauteren M, et al. Heart rate reduction induced by the if current inhibitor ivabradine improves diastolic function and attenuates cardiac tissue hypoxia. J Cardiovasc Pharmacol. 2012;59(3):260–7.

    Article  CAS  PubMed  Google Scholar 

  72. Christensen LP, Zhang RL, Zheng W, et al. Postmyocardial infarction remodeling and coronary reserve: effects of ivabradine and beta blockade therapy. Am J Physiol Heart Circ Physiol. 2009;297(1):H322–30.

    CAS  PubMed  Google Scholar 

  73. Suffredini S, Stillitano F, Comini L, et al. Long-term treatment with ivabradine in post-myocardial infarcted rats counteracts f-channel overexpression. Br J Pharmacol. 2012;165(5):1457–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. On behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.

    Article  CAS  PubMed  Google Scholar 

  75. Solomon SD, Anavekar N, Skali H, et al. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005;112(24):3738–44.

    Article  PubMed  Google Scholar 

  76. Kleinbongard P, Gedik N, Witting P, Freedman B, Klocker N, Heusch G. Pleiotropic, heart rate-independent cardioprotection by ivabradine. Br J Pharmacol. 2015;172(17):4380–90.

    Article  CAS  PubMed  Google Scholar 

  77. Gerbaud E, Montaudon M, Chasseriaud W, et al. Effect of ivabradine on left ventricular remodelling after reperfused myocardial infarction: a pilot study. Arch Cardiovasc Dis. 2014;107(1):33–41.

    Article  PubMed  Google Scholar 

  78. Vercauteren M, Favre J, Mulder P, et al. Protection of endothelial function by long-term heart rate reduction induced by ivabradine in a rat model of chronic heart failure. P468. Eur Heart J. 2007;28(suppl):48.

  79. Gupta RC, Wang M, Ilsar I, et al. Heart rate reduction with ivabradine improves sarcoplasmic reticulum calcium cycling in left ventricular myocardium of dogs with moderate heart failure. J Am Coll Cardiol. 2011;57(11):E323.

    Article  Google Scholar 

  80. Remme WJ, Riegger G, Hildebrandt P, et al. The benefits of early combination treatment of carvedilol and an ACE-inhibitor in mild Heart Failure and left ventricular systolic dysfunction. The carvedilol and ACE-inhibitor remodelling mild Heart Failure evaluation trial (CARMEN). Cardiovasc Drugs Ther. 2004;18(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  81. Jondeau G, Böhm M, Tavazzi L, et al. Hemodynamic effects of ivabradine, an agent that reduces heart rate, in patients with moderate to severe systolic heart failure receiving beta-blockers. Arch Mal Coeur Vaiss. 2008;101Abstract.

  82. Busseuil D, Shi Y, Mecteau M, et al. Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology. 2010;117(3):234–42.

    Article  CAS  PubMed  Google Scholar 

  83. Navaratnarajah M, Ibrahim M, Siedlecka U, et al. Influence of ivabradine on reverse remodelling during mechanical unloading. Cardiovasc Res. 2013;97(2):230–9.

    Article  CAS  PubMed  Google Scholar 

  84. Ulu N, Henning RH, Goris M, Schoemaker RG, Van Gilst WH. Effects of ivabradine and metoprolol on cardiac angiogenesis and endothelial dysfunction in rats with heart failure. J Cardiovasc Pharmacol. 2009;53(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  85. Ciobotaru V, Heimburger M, Louedec L, et al. Effect of long-term heart rate reduction by If-current inhibition on pressure-overload-induced heart failure in rats. J Pharmacol Exp Ther. 2007;324(1):43–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The article processing charges and the open access fee for this publication were funded by Laboratoires Servier, Brazil, an incorporated company of Servier. The named author meets the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this manuscript, takes responsibility for the integrity of the work as a whole, and has given final approval for the version to be published.

Disclosures

The author has no relevant affiliations or financial involvement with any organization or entity in conflict with the subject matter or materials discussed in the manuscript.

Compliance with ethics guidelines

This article is based on previously conducted studies and does not involve any new studies of human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Carlos Pereira-Barretto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Barretto, A.C. Cardiac and Hemodynamic Benefits: Mode of Action of Ivabradine in Heart Failure. Adv Ther 32, 906–919 (2015). https://doi.org/10.1007/s12325-015-0257-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12325-015-0257-6

Keywords

Navigation