Skip to main content
Log in

Neuronal Nitric Oxide Synthase Critically Regulates the Endocannabinoid Pathway in the Murine Cerebellum During Development

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is a major site of endocannabinoid (eCB) production and signaling. The predominant eCB within the cerebellum, 2-arachidonoylglycerol (2-AG), is produced by a metabotropic glutamate receptor type 1 (mGluR1)-initiated signaling cascade within Purkinje neurons (PNs). 2-AG retrogradely stimulates cannabinoid 1 receptors (CB1Rs) located on presynaptic terminals. The activated CB1R decreases neurotransmitter release and leads to the production of nitric oxide (NO), a gaseous molecule. Recently, our group discovered that during development in mice lacking neuronal nitric oxide synthase (nNOS−/−), PNs display an excitotoxic phenotype associated with overactivated mGluR1. Considering the importance of mGluR1 in 2-AG synthesis, the present study explored the role of nNOS-derived NO in regulating the eCB pathway within the cerebella of wildtype (WT) and nNOS−/− mice at postnatal day 7 (PD7), 2 weeks (2 W), and 7 weeks (7 W). Our analysis showed that diacylglycerol lipase α, the enzyme that catalyzes 2-AG production, was elevated at early postnatal ages, and followed by elevated levels of 2-AG in nNOS−/− cerebella compared to WT. CB1R expression in nNOS−/− cerebella was upregulated at PD7 but decreased at 2 W and 7 W when compared to age-matched WT mice cerebella. Importantly, treating organotypic nNOS−/− cerebellar slice cultures with an NO-donor–attenuated CB1R levels after 7 days in vitro. In addition, expression of the eCB hydrolases fatty acid amide hydrolase and monoacylglycerol lipase were significantly downregulated in nNOS−/− cerebella compared to WT cerebella at 7 W. Together, these results reveal a novel role for nNOS/NO in regulating eCB signaling in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Manto M, Bower JM, Conforto AB, Delgado-García JM, da Guarda SNF, Gerwig M, et al. Consensus paper: roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum [Internet]. 2012;11(2):457–87. Available from: https://doi.org/10.1007/s12311-011-0331-9

  2. Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. The Cerebellum [Internet]. 2012;11(2):505–25. Available from: http://link.springer.com/10.1007/s12311-011-0321-y

  3. Hirano T. Regulation and interaction of multiple types of synaptic plasticity in a Purkinje neuron and their contribution to motor learning. Cerebellum [Internet]. 2018 Dec 1 [cited 2021 Apr 12];17(6):756–65. Available from: https://doi.org/10.1007/s12311-018-0963-0

  4. Bredt DS, Hwang PM, Snyder SH. Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature [Internet]. 1990;347(6295):768–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1700301

  5. Campese VM, Sindhu RK, Ye S, Bai Y, Vaziri ND, Jabbari B. Regional expression of NO synthase , NAD ( P ) H oxidase and superoxide dismutase in the rat brain. Brain Res [Internet]. 2006;1134:27–32. Available from: https://doi.org/10.1016/j.brainres.2006.11.067

  6. Ling S, Zhou J, Rudd JA, Hu Z, Fang M. The expression of neuronal nitric oxide synthase in the brain of the mouse during embryogenesis. Anat Rec Adv Integr Anat Evol Biol [Internet]. 2012 Mar 1 [cited 2022 Sep 30];295(3):504–14. Available from: https://doi.org/10.1002/ar.22408

  7. Ihara H, Kuwamura M, Atsuta M, Nihonmatsu I, Okada T, Mukamoto M, et al. Expression of neuronal nitric oxide synthase variant, nNOS-μ, in rat brain. Nitric Oxide - Biol Chem. 2006;15(1):13–9.

    Article  CAS  Google Scholar 

  8. Tiburcio-Félix R, Cisneros B, Hernández-Kelly LCR, Hernández-Contreras MA, Luna-Herrera J, Rea-Hernández I, et al. Neuronal nitric oxide synthase in cultured cerebellar Bergmann Glia: glutamate-dependent regulation. ACS Chem Neurosci [Internet]. 2019 Jun 19 [cited 2021 Apr 13];10(6):2668–75. Available from: https://pubs.acs.org/sharingguidelines

  9. Baader SL, Bucher S, Schilling K. The developmental expression of neuronal nitric oxide synthase in cerebellar granule cells is sensitive to GABA and neurotrophins. Dev Neurosci [Internet]. 1997 [cited 2022 Sep 30];19(3):283–90. Available from: https://pubmed.ncbi.nlm.nih.gov/9208212/

  10. Matyash V, Filippov V, Mohrhagen K, Kettenmann H. Nitric oxide signals parallel fiber activity to Bergmann glial cells in the mouse cerebellar slice. Mol Cell Neurosci. 2001;18(6):664–70.

    Article  PubMed  CAS  Google Scholar 

  11. Wang D-J, Su L-D, Wang Y-N, Yang D, Sun C-L, Zhou L, et al. Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci [Internet]. 2014;34(6):2355–64. Available from: https://doi.org/10.1523/JNEUROSCI.4064-13.2014

  12. Shibuki K, Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature [Internet]. 1991 Jan [cited 2021 Mar 23];349(6307):326–8. Available from: https://www.nature.com/articles/349326a0

  13. Tellios V, Maksoud MJE, Xiang YY, Lu WY. Nitric oxide critically regulates Purkinje neuron dendritic development through a metabotropic glutamate receptor type 1–mediated mechanism. Cerebellum. 2020;19(4):510–26.

    Article  PubMed  CAS  Google Scholar 

  14. Willard SS, Koochekpour S. Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci. 2013;9(9):948–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Hartmann J, Henning HA, Konnerth A. mGluR1/TRPC3-mediated synaptic transmission and calcium signaling in mammalian central neurons. Cold Spring Harb Perspect Biol. 2011;3(4):1–16.

    Article  Google Scholar 

  16. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat Chem Biol [Internet]. 2006;2(11):596–607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16998480

  17. Ryu C, Jang DC, Jung D, Kim YG, Shim HG, Ryu H-H, et al. STIM1 regulates somatic Ca 2+ signals and intrinsic firing properties of cerebellar Purkinje neurons. J Neurosci [Internet]. 2017;37(37):3973–16. Available from: https://doi.org/10.1523/JNEUROSCI.3973-16.2017

  18. Su L-D, Wang D-J, Yang D, Shen Y, Hu Y-H. Retrograde cPLA2α/arachidonic acid/2-AG signaling is essential for cerebellar depolarization-induced suppression of excitation and long-term potentiation. Cerebellum [Internet]. 2013 Jun 11 [cited 2021 Mar 23];12(3):297–9. Available from: https://doi.org/10.1007/s12311-012-0444-9

  19. Maejima T, Oka S, Hashimotodani Y, Ohno-Shosaku T, Aiba A, Wu D, et al. Synaptically driven endocannabinoid release requires Ca2+-assisted metabotropic glutamate receptor subtype 1 to phospholipase Cbeta4 signaling cascade in the cerebellum. J Neurosci [Internet]. 2005 Jul 20 [cited 2021 Mar 23];25(29):6826–35. Available from: www.jneurosci.org

  20. Savinainen JR, Järvinen T, Laine K, Laitinen JT. Despite substantial degradation, 2-arachidonoylglycerol is a potent full efficacy agonist mediating CB 1 receptor-dependent G-protein activation in rat cerebellar membranes. Br J Pharmacol [Internet]. 2001 Oct [cited 2021 Mar 23];134(3):664–72. Available from: www.nature.com/bjp

  21. Richardson D, Ortori CA, Chapman V, Kendall DA, Barrett DA. Quantitative profiling of endocannabinoids and related compounds in rat brain using liquid chromatography-tandem electrospray ionization mass spectrometry. Anal Biochem. 2007;360(2):216–26.

    Article  PubMed  CAS  Google Scholar 

  22. Kawamura Y. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J Neurosci [Internet]. 2006 Mar 15 [cited 2021 Mar 23];26(11):2991–3001. Available from: https://doi.org/10.1523/JNEUROSCI.4872-05.2006

  23. Howlett AC. Cannabinoid inhibition of adenylate cyclase: relative activity of constituents and metabolites of marihuana. Neuropharmacology [Internet]. 1987 May [cited 2021 Mar 23];26(5):507–12. Available from: https://www.sciencedirect.com/science/article/pii/0028390887900359

  24. Carey MR, Myoga MH, McDaniels KR, Marsicano G, Lutz B, Mackie K, et al. Presynaptic CB1 receptors regulate synaptic plasticity at cerebellar parallel fiber synapses. J Neurophysiol [Internet]. 2011 Feb [cited 2021 Mar 23];105(2):958–63. Available from: https://doi.org/10.1152/jn.00980.2010

  25. Safo P, Cravatt B, Regehr W. Retrograde endocannabinoid signaling in the cerebellar cortex. The Cerebellum [Internet]. 2006 Jun 1 [cited 2021 Mar 23];5(2):134–45. Available from: http://doi.org/10.1080/14734220600791477

  26. Tapia M, Dominguez A, Zhang W, Puerto A Del, Ciorraga M, Benitez MJ, et al. Cannabinoid receptors modulate neuronal morphology and ankyring density at the axon initial segment. Front Cell Neurosci [Internet]. 2017 Jan 25 [cited 2021 Mar 23];11:5. Available from: www.frontiersin.org

  27. Sun HK, Seok JW, Xiao OM, Ledent C, Jin K, Greenberg DA. Role for neuronal nitric-oxide synthase in cannabinoid-induced neurogenesis. J Pharmacol Exp Ther [Internet]. 2006 Oct 1 [cited 2021 Mar 23];319(1):150–4. Available from: http://jpet.aspetjournals.org.

  28. Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC. Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology. 2008;54(1):23–30.

    Article  PubMed  CAS  Google Scholar 

  29. Smith AD, Dar MS. Behavioral cross-tolerance between repeated intracerebellar nicotine and acute Δ9-tetrahydrocannabinol-induced cerebellar ataxia: role of cerebellar nitric oxide. J Pharmacol Exp Ther [Internet]. 2007 Jul 1 [cited 2021 Apr 13];322(1):243–53. Available from: http://jpet.aspetjournals.org.

  30. Fernández-Ruiz J, Moreno-Martet M, Rodríguez-Cueto C, Palomo-Garo C, Gõmez-Cañas M, Valdeolivas S, et al. Prospects for cannabinoid therapies in basal ganglia disorders [Internet]. Vol. 163, British Journal of Pharmacology. Wiley-Blackwell; 2011 [cited 2021 May 4]. p. 1365–78. Available from: /pmc/articles/PMC3165947/

  31. Hill AJ, Williams CM, Whalley BJ, Stephens GJ. Phytocannabinoids as novel therapeutic agents in CNS disorders [Internet]. Vol. 133, Pharmacology and Therapeutics. Elsevier Inc.; 2012 [cited 2021 May 4]. p. 79–97. Available from: https://pubmed.ncbi.nlm.nih.gov/21924288/

  32. Rodríguez-Cueto C, Benito C, Romero J, Hernández-Gálvez M, Gómez-Ruiz M, Fernández-Ruiz J. Endocannabinoid-hydrolysing enzymes in the post-mortem cerebellum of humans affected by hereditary autosomal dominant ataxias. Pathobiology [Internet]. 2014 [cited 2021 May 4];81(3):149–59. Available from: https://pubmed.ncbi.nlm.nih.gov/24642775/

  33. Carney ST, Lloyd ML, MacKinnon SE, Newton DC, Jones JD, Howlett AC, et al. Cannabinoid regulation of nitric oxide synthase i (nNOS) in neuronal cells. J Neuroimmune Pharmacol. 2009;4(3):338–49.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods [Internet]. 2012 Jun 28 [cited 2021 May 5];9(7):676–82. Available from: https://pubmed.ncbi.nlm.nih.gov/22743772/

  35. Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, et al. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci [Internet]. 2006 May 3 [cited 2021 Jun 2];26(18):4740–51. Available from: https://pubmed.ncbi.nlm.nih.gov/16672646/

  36. Yoshida T, Hashimoto K, Zimmer A, Maejima T, Araishi K, Kano M. The cannabinoid CB1 receptor mediates retrograde signals for depolarization-induced suppression of inhibition in cerebellar Purkinje cells. J Neurosci [Internet]. 2002 Mar 1 [cited 2021 Mar 23];22(5):1690–7. Available from: https://doi.org/10.1523/JNEUROSCI.22-05-01690.2002

  37. Lévénès C, Daniel H, Soubrié P, Crépel F. Cannabinoids decrease excitatory synaptic transmission and impair long-term depression in rat cerebellar Purkinje cells. J Physiol. 1998;510(3):867–79.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Safo PK, Regehr WG. Endocannabinoids control the induction of cerebellar LTD. Neuron. 2005;48(4):647–59.

    Article  PubMed  CAS  Google Scholar 

  39. Daniel H, Levenes C, Crépel F. Cellular mechanisms of cerebellar LTD. Trends Neurosci. 1998;21(9):401–7.

    Article  PubMed  CAS  Google Scholar 

  40. Kyriakatos A, El Manira A. Long-term plasticity of the spinal locomotor circuitry mediated by endocannabinoid and nitric oxide signaling. J Neurosci [Internet]. 2007 Nov 14 [cited 2021 May 5];27(46):12664–74. Available from: https://pubmed.ncbi.nlm.nih.gov/18003846/

  41. Karadayian AG, Bustamante J, Czerniczyniec A, Lombardi P, Cutrera RA, Lores-Arnaiz S. Alcohol hangover induces mitochondrial dysfunction and free radical production in mouse cerebellum. Neuroscience. 2015;4(304):47–59.

    Article  Google Scholar 

  42. Basavarajappa BS, Hungund BL. Role of the endocannabinoid system in the development of tolerance to alcohol. Alcohol Alcohol [Internet]. 2005 Jan 1 [cited 2021 Mar 23];40(1):15–24. Available from: http://academic.oup.com/alcalc/article/40/1/15/282405/ROLE-OF-THE-ENDOCANNABINOID-SYSTEM-IN-THE

  43. Wang M, Qi D-S, Zhou C, Han D, Li P-P, Zhang F, et al. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII–nNOS signaling pathway. Brain Res [Internet]. 2016 Mar 1 [cited 2022 Sep 30];1634:140–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0006899316000202

  44. Shonesy BC, Wang X, Rose KL, Ramikie TS, Cavener VS, Rentz T, et al. CaMKII regulates diacylglycerol lipase-α and striatal endocannabinoid signaling. Nat Neurosci [Internet]. 2013 Apr [cited 2021 May 5];16(4):456–63. Available from: https://pubmed.ncbi.nlm.nih.gov/23502535/

  45. Dotsey EY, Jung K-M, Basit A, Wei D, Daglian J, Vacondio F, et al. Peroxide-dependent MGL sulfenylation regulates 2-AG-mediated endocannabinoid signaling in brain neurons. Chem Biol [Internet]. 2015 May [cited 2022 Sep 30];22(5):619–28. Available from: https://www.sciencedirect.com/science/article/pii/S107455211500157X

  46. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci [Internet]. 2004 Jul 1 [cited 2021 Mar 23];20(2):441–58. Available from: http://doi.wiley.com/https://doi.org/10.1111/j.1460-9568.2004.03428.x

  47. Pan B, Wang W, Zhong P, Blankman JL, Cravatt BF, Liu Q -s. Alterations of endocannabinoid signaling, synaptic plasticity, learning, and memory in monoacylglycerol lipase knock-out mice. J Neurosci [Internet]. 2011 Sep 21 [cited 2021 Mar 23];31(38):13420–30. Available from: https://doi.org/10.1523/JNEUROSCI.2075-11.2011

  48. Schlosburg JE, Blankman JL, Long JZ, Nomura DK, Kinsey SG, Nguyen PT, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Publ Gr. 2010;13(9).

  49. Imperatore R, Morello G, Luongo L, Taschler U, Romano R, De Gregorio D, et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB 1 R signaling and anxiety-like behavior. J Neurochem [Internet]. 2015 Nov 1 [cited 2021 Mar 23];135(4):799–813. Available from: https://doi.org/10.1111/jnc.13267

  50. Di Marzo V, Maccarrone M. FAAH and anandamide: is 2-AG really the odd one out? Trends Pharmacol Sci. 2008;29(5):229–33.

    Article  PubMed  Google Scholar 

  51. Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S. Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett. 1998;422(1):69–73.

    Article  PubMed  CAS  Google Scholar 

  52. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435(7045):1108–12.

    Article  PubMed  CAS  Google Scholar 

  53. Gao Y, Vasilyev D V, Goncalves MB, Howell F V, Hobbs C, Reisenberg M, et al. Loss of retrograde endocannabinoid signaling and reduced adult neurogenesis in diacylglycerol lipase knock-out mice. J Neurosci [Internet]. 2010 Feb 10 [cited 2021 Mar 23];30(6):2017–24. Available from: https://doi.org/10.1523/JNEUROSCI.5693-09.2010

  54. Maccarrone M, Rossi S, Bari M, De Chiara V, Fezza F, Musella A, et al. Anandamide inhibits metabolism and physiological actions of 2-arachidonoylglycerol in the striatum. Nat Neurosci. 2008;11(2):152–9.

    Article  PubMed  CAS  Google Scholar 

  55. Pouzat C, Hestrin S. Developmental regulation of basket/stellate cell→Purkinje cell synapses in the cerebellum. J Neurosci [Internet]. 1997 Dec 1 [cited 2021 Mar 23];17(23):9104–12. Available from: https://doi.org/10.1523/JNEUROSCI.17-23-09104.1997

  56. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron [Internet]. 2012 Oct 4 [cited 2021 Mar 23];76(1):70–81. Available from: https://doi.org/10.1016/j.neuron.2012.09.020

  57. Wu D-F, Yang L-Q, Goschke A, Stumm R, Brandenburg L-O, Liang Y-J, et al. Role of receptor internalization in the agonist-induced desensitization of cannabinoid type 1 receptors. J Neurochem. 2008;104(4):1132–43. Available from: http://doi.wiley.com/10.1111/j.1471-4159.2007.05063.x

  58. Rakotomamonjy J, Guemez-Gamboa A. Purkinje cell survival in organotypic cerebellar slice cultures. J Vis Exp. 2019(154):60353. Available from: https://www.jove.com/video/60353

Download references

Funding

This study was supported by a CIHR grant (MOP-133504) to W-Y L. VT and MJEM have been awarded Ontario Graduate Scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yang Lu.

Ethics declarations

Ethics approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Animal Care and Veterinary Services at the University of Western Ontario under the Animal Use Protocol (#2018–106).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellios, V., Maksoud, M.J.E., Nagra, R. et al. Neuronal Nitric Oxide Synthase Critically Regulates the Endocannabinoid Pathway in the Murine Cerebellum During Development. Cerebellum 22, 1200–1215 (2023). https://doi.org/10.1007/s12311-022-01493-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-022-01493-2

Keywords

Navigation