Skip to main content
Log in

White Matter Microstructural Properties of the Cerebellar Peduncles Predict Change in Symptoms of Psychopathology in Adolescent Girls

  • ORIGINAL PAPER
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Internalizing symptoms typically emerge in adolescence and are more prevalent in females than in males; in contrast, externalizing symptoms typically emerge in childhood and are more commonly observed in males. Previous research has implicated aspects of white matter organization, including fractional anisotropy (FA), of cerebral tracts in both internalizing and externalizing symptoms. Although the cerebellum has been posited to integrate limbic and cortical regions, its role in psychopathology is not well understood. In this longitudinal study, we investigated whether FA of the superior (SCP), middle (MCP), and inferior cerebellar peduncles (ICP) predict change in symptoms and whether sex moderates this association. One hundred eleven adolescents completed the Youth Self-Report, assessing symptoms at baseline (ages 9–13 years) and again 2 years later. Participants also underwent diffusion-weighted imaging at baseline. We used deterministic tractography to segment and compute mean FA of the cerebellar peduncles. Lower FA of the right SCP at baseline predicted increases in internalizing symptoms in females only. Lower FA in the right SCP and ICP also predicted increases in externalizing symptoms in females, but these associations did not survive multiple comparison correction. There was no association between FA of the cerebellar peduncles and change in symptoms in males or between MCP FA and symptom changes in males or females. Organizational properties of the SCP may be a sex-specific marker of internalizing symptom changes in adolescence. The cerebellar peduncles should be explored further in future studies to elucidate sex differences in symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Achenbach TM. Manual for the youth self-report and 1991 profile. Burlington: Department of Psychiatry, University of Vermont; 1991.

    Google Scholar 

  2. Adamaszek M, D’Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Marien P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus paper: cerebellum and emotion. In: Cerebellum. Springer New York LLC; 2017. Vol. 16, Issue 2, pp. 552–76.

  3. Andre QR, Geeraert BL, Lebel C. Brain structure and internalizing and externalizing behavior in typically developing children and adolescents. Brain Struct Funct. 2020;225(4):1369–78. https://doi.org/10.1007/s00429-019-01973-y.

    Article  PubMed  Google Scholar 

  4. Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GGL, Guimarães JL, Araújo C, Oliveira I, Miranda-Scippa A, Jackowski A. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135(1–3):305–9. https://doi.org/10.1016/j.jad.2011.06.059.

    Article  PubMed  Google Scholar 

  5. Beal SJ, Dorn LD, LoBraico EJ, Lutz N, Ram N. Strategies for assessing and modeling depressive symptoms in longitudinal studies of adolescents. J Res Adolesc. 2020;30(2):345–60. https://doi.org/10.1111/jora.12528.

    Article  PubMed  Google Scholar 

  6. Bechtel N, Kobel M, Penner IK, Klarhöfer M, Scheffler K, Opwis K, Weber P. Decreased fractional anisotropy in the middle cerebellar peduncle in children with epilepsy and/or attention deficit/hyperactivity disorder: a preliminary study. Epilepsy Behav. 2009;15(3):294–8. https://doi.org/10.1016/j.yebeh.2009.04.005.

    Article  PubMed  Google Scholar 

  7. Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW Age-dependent white matter characteristics of the cerebellar peduncles from infancy through adolescence. Cerebellum. 2019;18(3). https://doi.org/10.1007/s12311-018-11003-9.

  8. Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW. Age-dependent white matter characteristics of the cerebellar peduncles from infancy through adolescence. The Cerebellum. 2019;1–16. https://doi.org/10.1007/s12311-018-1003-9.

  9. Chahal R, Delevich K, Kirshenbaum JS, Borchers LR, Ho TC, Gotlib IH. Sex-Differences in pubertal associations with fronto-accumbal white matter morphometry: implications for understanding sensitivity to reward and punishment. Neuroimage. 2020;226: 117598. https://doi.org/10.1016/j.neuroimage.2020.117598.

    Article  PubMed  Google Scholar 

  10. Chahal R, Weissman DG, Hallquist MN, Robins RW, Hastings PD, Guyer AE. Neural connectivity biotypes: associations with internalizing problems throughout adolescence. Psychol Med. 2020. https://doi.org/10.1017/S003329172000149X.

  11. Chahal R, Weissman DG, Marek S, Rhoads SA, Hipwell AE, Forbes EE, Keenan K, Guyer AE. Girls’ brain structural connectivity in late adolescence relates to history of depression symptoms. J Child Psychol Psychiatry. 2020;61(11):1224–33. https://doi.org/10.1111/jcpp.13184.

    Article  PubMed  Google Scholar 

  12. Chang L-C, Jones DK, Pierpaoli C. RESTORE: Robust estimation of tensors by outlier rejection. Magn Reson Med. 2005;53(5):1088–95. https://doi.org/10.1002/mrm.20426.

    Article  PubMed  Google Scholar 

  13. Costello EJ, Foley DL, Angold A. 10-Year research update review: the epidemiology of child and adolescent psychiatric disorders: II. Developmental epidemiology. Journal of the American Academy of Child and Adolescent Psychiatry. 2006;45(Issue1):8–25. https://doi.org/10.1097/01.chi.0000184929.41423.c0.

  14. Hayward C, Sanborn K. Puberty and the emergence of gender differences in psychopathology. J Adolesc Health. 2002;30(4 SUPPL. 1):49–58. https://doi.org/10.1016/S1054-139X(02)00336-1.

    Article  PubMed  Google Scholar 

  15. Herting MM, Maxwell EC, Irvine C, Nagel BJ. The impact of sex, puberty, and hormones on white matter microstructure in adolescents. n.d. https://doi.org/10.1093/cercor/bhr246.

  16. Ho TC, Colich NL, Sisk LM, Oskirko K, Jo B, Gotlib IH. Sex differences in the effects of gonadal hormones on white matter microstructure development in adolescence. Dev Cogn Neurosci. 2020;42: 100773. https://doi.org/10.1016/j.dcn.2020.100773.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ho TC, King LS, Leong JK, Colich NL, Humphreys KL, Ordaz SJ, Gotlib IH. Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence. Soc Cognit Affect Neurosci. 2017;12(9):1460–9. https://doi.org/10.1093/scan/nsx065.

    Article  Google Scholar 

  18. Huselid RF, Cooper ML. Gender roles as mediators of sex differences in expressions of pathology. J Abnorm Psychol. 1994;103(4):595–603. https://doi.org/10.1037/0021-843X.103.4.595.

    Article  CAS  PubMed  Google Scholar 

  19. Kaczkurkin AN, Raznahan A, Satterthwaite TD. Sex differences in the developing brain: insights from multimodal neuroimaging. Neuropsychopharmacology. 2019;44(Issue 1):71–85. https://doi.org/10.1038/s41386-018-0111-z.

  20. Kaczkurkin AN, Sotiras A, Baller EB, Barzilay R, Calkins ME, Chand GB, Cui Z, Erus G, Fan Y, Gur RE, Gur RC, Moore TM, Roalf DR, Rosen AFG, Ruparel K, Shinohara RT, Varol E, Wolf DH, Davatzikos C, Satterthwaite TD. Neurostructural heterogeneity in youths with internalizing symptoms. Biol Psychiat. 2020;87(5):473–82. https://doi.org/10.1016/j.biopsych.2019.09.005.

    Article  PubMed  Google Scholar 

  21. Keenan K, Culbert KM, Grimm KJ, Hipwell AE, Stepp SD. Exploring the complex association between pubertal development and depression in African American and European American girls. J Abnorm Psychol. 2014;123(4):725–36. https://doi.org/10.1037/a0038003.

    Article  PubMed  PubMed Central  Google Scholar 

  22. King LS, Dennis EL, Humphreys KL, Thompson PM, Gotlib IH. Cross-sectional and longitudinal associations of family income-to-needs ratio with cortical and subcortical brain volume in adolescent boys and girls. Dev Cogn Neurosci. 2020;44: 100796. https://doi.org/10.1016/j.dcn.2020.100796.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Korhonen M, Luoma I, Salmelin RK, Helminen M, Kaltiala-Heino R, Tamminen T. The trajectories of child’s internalizing and externalizing problems, social competence and adolescent self-reported problems in a Finnish normal population sample. Sch Psychol Int. 2014;35(6):561–79. https://doi.org/10.1177/0143034314525511.

    Article  Google Scholar 

  24. Leemans A, Jones DK. The B -matrix must be rotated when correcting for subject motion in DTI data. Magn Reson Med. 2009;61(6):1336–49. https://doi.org/10.1002/mrm.21890.

    Article  PubMed  Google Scholar 

  25. Leroi I, O’Hearn E, Marsh L, Lyketsos CG, Rosenblatt A, Ross CA, Brandt J, Margolis RL. Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington’s disease. Am J Psychiatry. 2002;159(8):1306–14. https://doi.org/10.1176/appi.ajp.159.8.1306.

    Article  PubMed  Google Scholar 

  26. Lewinn KZ, Connolly CG, Wu J, Drahos M, Hoeft F, Ho TC, Simmons AN, Yang TT. White matter correlates of adolescent depression: structural evidence for frontolimbic disconnectivity. J Am Acad Child Adolesc Psychiatry. 2014;53(8):899-909.e7. https://doi.org/10.1016/j.jaac.2014.04.021.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lewinsohn PM, Rohde P, Seeley JR, Klein DN, Gotlib IH. Natural course of adolescent major depressive disorder in a community sample: predictors of recurrence in young adults. Am J Psychiatry. 2000;157(10):1584–91. https://doi.org/10.1176/appi.ajp.157.10.1584.

    Article  CAS  PubMed  Google Scholar 

  28. Lewinsohn PM, Hops H, Roberts RE, Seeley JR, Andrews JA. Adolescent psychopathology: I. prevalence and incidence of depression and other DSM-III-R disorders in high school students. J Abnormal Psychol. 1993;102(1):133–44. https://doi.org/10.1037/0021-843X.102.1.133.

  29. Liu L, Zeng LL, Li Y, Ma Q, Li B, Shen H, Hu D. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS ONE. 2012;7(6): e39516. https://doi.org/10.1371/journal.pone.0039516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma Q, Zeng LL, Shen H, Liu L, Hu D. Altered cerebellar-cerebral resting-state functional connectivity reliably identifies major depressive disorder. Brain Res. 2013;1495:86–94. https://doi.org/10.1016/j.brainres.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  31. Mankiw C, Park MTM, Reardon PK, Fish AM, Clasen LS, Greenstein D, Giedd JN, Blumenthal JD, Lerch JP, Chakravarty MM, Raznahan A. Allometric analysis detects brain size-independent effects of sex and sex chromosome complement on human cerebellar organization. J Neurosci. 2017;37(21):5221–31. https://doi.org/10.1523/JNEUROSCI.2158-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martel MM. Sexual selection and sex differences in the prevalence of childhood externalizing and adolescent internalizing disorders. Psychol Bull. 2013;139(6):1221–59. https://doi.org/10.1037/a0032247.

    Article  PubMed  Google Scholar 

  33. Miller JG, Ho TC, Humphreys KL, King LS, Foland- Ross LC, Colich NL, Ordaz SJ, Lin J, Gotlib IH. Early life stress, frontoamygdala connectivity, and biological aging in adolescence: a longitudinal investigation. Cerebral Cortex. 2020;30(7):4269–4280. https://doi.org/10.1093/cercor/bhaa057.

  34. Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A, Lagerberg TV, Diedrichsen J, Schwarz E, Zink M, Eisenacher S, Kirsch P, Jönsson EG, Fatouros-Bergman H, Flyckt L, Pergola G, Quarto T, Bertolino A, Barch D, Meyer-Lindenberg A, et al. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Molecul Psychiatr. 2018;23(6):1512–20. https://doi.org/10.1038/mp.2017.106.

  35. Moberget T, Alnæs D, Kaufmann T, Doan NT, Córdova-Palomera A, Norbom LB, Rokicki J, van der Meer D, Andreassen OA, Westlye LT. Cerebellar grey matter volume is associated with cognitive function and psychopathology in adolescence. Biological Psychiatry. 2019. https://doi.org/10.1016/J.BIOPSYCH.2019.01.019.

  36. Naidich TP, Duvernoy HM. Duvernoy’s atlas of the human brain stem and cerebellum : high-field MRI : surface anatomy, internal structure, vascularization and 3D sectional anatomy. Springer; 2009.

    Google Scholar 

  37. Neumann A, Muetzel RL, Lahey BB, Bakermans-Kranenburg MJ, van IJzendoorn MH, Jaddoe VW, Hillegers MHJ, White T, Tiemeier H. White matter microstructure and the general psychopathology factor in children. J Am Acad Child Adolescent Psychiatr. 2020. https://doi.org/10.1016/j.jaac.2019.12.006.

  38. Okugawa G, Nobuhara K, Sugimoto T, Kinoshita T. Diffusion tensor imaging study of the middle cerebellar peduncles in patients with schizophrenia. In: Cerebellum. Springer; 2005. Vol. 4, Issue 2, pp. 123–7. https://doi.org/10.1080/14734220510007879.

  39. Peng J, Liu J, Nie B, Li Y, Shan B, Wang G, Li K. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: a voxel-based morphometry study. Eur J Radiol. 2011;80(2):395–9. https://doi.org/10.1016/j.ejrad.2010.04.006.

    Article  PubMed  Google Scholar 

  40. Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magn Reson Med. 2004;51(1):103–14. https://doi.org/10.1002/mrm.10677.

    Article  CAS  PubMed  Google Scholar 

  41. Romer AL, Knodt AR, Houts R, Brigidi BD, Moffitt TE, Caspi A, Hariri AR. Structural alterations within cerebellar circuitry are associated with general liability for common mental disorders. Mol Psychiatry. 2018;23(4):1084–90. https://doi.org/10.1038/mp.2017.57.

    Article  CAS  PubMed  Google Scholar 

  42. Romer AL, Knodt AR, Sison ML, Ireland D, Houts R, Ramrakha S, Poulton R, Keenan R, Melzer TR, Moffitt TE, Caspi A, Hariri AR. Replicability of structural brain alterations associated with general psychopathology: evidence from a population-representative birth cohort. Mol Psychiatr. 2019. https://doi.org/10.1038/s41380-019-0621-z.

  43. Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. In: Journal of child psychology and psychiatry and allied disciplines. John Wiley & Sons, Ltd; 2003. Vol. 44, Issue 8, pp. 1092–115. https://doi.org/10.1111/1469-7610.00194.

  44. Schmahmann J, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  45. Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. In: Biological psychiatry. Elsevier; 2009. Vol. 66, Issue 9, pp. 814–23. https://doi.org/10.1016/j.biopsych.2009.05.024.

  46. Sisk CL, Zehr JL. Pubertal hormones organize the adolescent brain and behavior. In: Frontiers in neuroendocrinology. Academic Press; 2005. Vol. 26, Issues 3–4, pp. 163–74. https://doi.org/10.1016/j.yfrne.2005.10.003.

  47. Sterba SK, Prinstein MJ, Cox MJ. Trajectories of internalizing problems across childhood: heterogeneity, external validity, and gender differences. 2007.

  48. Team RC. A language and environment for statistical computing. 2019.

  49. Winefield HR, Hammarström A, Nygren K, Hägglöf B. Internalized symptoms in adolescence as predictors of mental health in adulthood in the Northern Swedish cohort. Health. 2013;05(07):1164–71. https://doi.org/10.4236/health.2013.57157.

    Article  Google Scholar 

  50. Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS ONE. 2012;7(11): e49790. https://doi.org/10.1371/journal.pone.0049790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zahn-Waxler C, Crick NR, Shirtcliff EA, Woods KE. The origins and development of psychopathology in females and males. In: Developmental psychopathology. John Wiley & Sons, Inc; 2015. Vol. 1, pp. 76–138. https://doi.org/10.1002/9780470939383.ch4.

Download references

Acknowledgements

We thank Cat Camacho, Anna Cichocki, Monica Ellwood-Lowe, Megan Goyer, Amar Ojha, Holly Pham, Morgan Popolizio, Alexandra Price, Sophie Schouboe, and Lucinda Sisk for their assistance in data collection and management. We also thank all the adolescents and their families for participating in this research study.

Funding

The National Institutes of Health supported this research (NIH; R37MH101495 to IHG, F32MH120975 to RC, K01MH117442 to TCH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren R. Borchers.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1145 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borchers, L.R., Bruckert, L., Chahal, R. et al. White Matter Microstructural Properties of the Cerebellar Peduncles Predict Change in Symptoms of Psychopathology in Adolescent Girls. Cerebellum 21, 380–390 (2022). https://doi.org/10.1007/s12311-021-01307-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01307-x

Keywords

Navigation