Skip to main content

Advertisement

Log in

Neuroimaging Biomarkers and Neurocognitive Outcomes in Pediatric Medulloblastoma Patients: a Systematic Review

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Medulloblastoma is a malign posterior fossa brain tumor, mostly occurring in childhood. The CNS-directed chemoradiotherapy treatment can be very harmful to the developing brain and functional outcomes of these patients. However, what the underlying neurotoxic mechanisms are remain inconclusive. Hence, this review summarizes the existing literature on the association between advanced neuroimaging and neurocognitive changes in patients that were treated for pediatric medulloblastoma. The PubMed/Medline database was extensively screened for studies investigating the link between cognitive outcomes and multimodal magnetic resonance (MR) imaging in childhood medulloblastoma survivors. A behavioral meta-analysis was performed on the available IQ scores. A total of 649 studies were screened, of which 22 studies were included. Based on this literature review, we conclude medulloblastoma patients to be at risk for white matter volume loss, more frequent white matter lesions, and changes in white matter microstructure. Such microstructural alterations were associated with lower IQ, which reached the clinical cut-off in survivors across studies. Using functional MR scans, changes in activity were observed in cerebellar areas, associated with working memory and processing speed. Finally, cerebral microbleeds were encountered more often, but these were not associated with cognitive outcomes. Regarding intervention studies, computerized cognitive training was associated with changes in prefrontal and cerebellar activation and physical training might result in microstructural and cortical alterations. Hence, to better define the neural targets for interventions in pediatric medulloblastoma patients, this review suggests working towards neuroimaging-based predictions of cognitive outcomes. To reach this goal, large multimodal prospective imaging studies are highly recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Millard NE, De Braganca KC. Medulloblastoma. J Child Neurol. 2016;31:1341–53.

    Article  PubMed  Google Scholar 

  2. Komori T. The 2016 WHO Classification of Tumours of the Central Nervous System: the major points of revision. Neurol Med Chir (Tokyo). 2017;57:301–11.

    Article  Google Scholar 

  3. Lynch CF, Hart MN, Jones MP. Medulloblastoma: a population-based study of 532 cases. J Neuropathol Exp Neurol. 1991:134–44.

  4. Ostrom QT, De Blank PM, Kruchko C, Petersen CM, Liao P, Finlay JL, et al. Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology. 2015;16:x1–35.

    Article  PubMed  Google Scholar 

  5. McKean-Cowdin R, Razavi P, Barrington-Trimis J, Baldwin RT, Asgharzadeh S, Cockburn M, et al. Trends in childhood brain tumor incidence, 1973-2009. J Neuro-Oncol. 2013.

  6. Stiller CA, Bayne AM, Chakrabarty A, Kenny T, Chumas P. Incidence of childhood CNS tumours in Britain and variation in rates by definition of malignant behaviour: population-based study. BMC Cancer. 2019;19:139.

    Article  PubMed  Google Scholar 

  7. Weil AG, Wang AC, Westwick HJ, Ibrahim GM, Ariani RT, Crevier L, et al. Survival in pediatric medulloblastoma: a population-based observational study to improve prognostication. J Neuro-Oncol Springer US. 2017;132:99–107.

    Article  Google Scholar 

  8. Dressler EV, Dolecek TA, Liu M, Villano JL. Demographics, patterns of care, and survival in pediatric medulloblastoma. J Neuro-Oncol. United States. 2017;132:497–506.

    Article  Google Scholar 

  9. Huang PI, Lin SC, Lee YY, Ho DMT, Guo WY, Chang KP, et al. Large cell/anaplastic medulloblastoma is associated with poor prognosis—a retrospective analysis at a single institute. Childs Nerv Syst. 2017;33:1285–94.

    Article  PubMed  Google Scholar 

  10. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29:1408–14.

    Article  Google Scholar 

  11. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, Clifford SC, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123:465–72.

    Article  CAS  PubMed  Google Scholar 

  12. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC, Robertson PL, et al. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J Clin Oncol. 2006;24:4202–8.

    Article  CAS  PubMed  Google Scholar 

  13. Von Hoff K, Rutkowski S. Medulloblastoma. Curr Treat Options Neurol. 2012;14:416–26.

    Article  Google Scholar 

  14. Packer RJ, Goldwein J, Nicholson HS, Vezina LG, Allen JC, Ris MD, et al. Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: a Children’s Cancer Group Study. J Clin Oncol. United States. 1999;17:2127–36.

    Article  CAS  PubMed  Google Scholar 

  15. Packer RJ, Zhou T, Holmes E, Vezina G, Gajjar A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro-Oncology. England. 2013;15:97–103.

    Article  CAS  PubMed  Google Scholar 

  16. Srinivasan VM, Ghali MGZ, North RY, Boghani Z, Hansen D, Lam S. Modern management of medulloblastoma: molecular classification, outcomes, and the role of surgery. Surg Neurol Int India. 2016;7:S1135–41.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rutkowski S, Cohen B, Finlay J, Luksch R, Ridola V, Valteau-Couanet D, et al. Medulloblastoma in young children. Pediatr Blood Cancer. United States. 2010;54:635–7.

    Article  PubMed  Google Scholar 

  18. Khong P-L, Leung LHT, Chan GCF, Kwong DLW, Wong WHS, Cao G, et al. White matter anisotropy in childhood medulloblastoma survivors: association with neurotoxicity risk factors. Radiology United States. 2005;236:647–52.

    Article  PubMed  Google Scholar 

  19. Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M, Soerensen N, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N Engl J Med. 2005;352:978–86.

    Article  CAS  PubMed  Google Scholar 

  20. Rutkowski S, Gerber NU, von Hoff K, Gnekow A, Bode U, Graf N, et al. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro-Oncology. England. 2009;11:201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Bueren AO, von Hoff K, Pietsch T, Gerber NU, Warmuth-Metz M, Deinlein F, et al. Treatment of young children with localized medulloblastoma by chemotherapy alone: results of the prospective, multicenter trial HIT 2000 confirming the prognostic impact of histology. Neuro-Oncology. England. 2011;13:669–79.

    Article  Google Scholar 

  22. Chi SN, Gardner SL, Levy AS, Knopp EA, Miller DC, Wisoff JH, et al. Feasibility and response to induction chemotherapy intensified with high-dose methotrexate for young children with newly diagnosed high-risk disseminated medulloblastoma. J Clin Oncol. 2004;22:4881–7.

    Article  CAS  PubMed  Google Scholar 

  23. Mason WP, Grovas A, Halpern S, Dunkel IJ, Garvin J, Heller G, et al. Intensive chemotherapy and bone marrow rescue for young children with newly diagnosed malignant brain tumors. J Clin Oncol. United States. 1998;16:210–21.

    Article  CAS  PubMed  Google Scholar 

  24. Lafay-Cousin L, Smith A, Chi SN, Wells E, Madden J, Margol A, et al. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr Blood Cancer. United States. 2016;63:1527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ashley DM, Merchant TE, Strother D, Zhou T, Duffner P, Burger PC, et al. Induction chemotherapy and conformal radiation therapy for very young children with nonmetastatic medulloblastoma: Children’s Oncology Group study P9934. J Clin Oncol. United States. 2012;30:3181–6.

    Article  CAS  PubMed  Google Scholar 

  26. King AA, Seidel K, Di C, Leisenring WM, Perkins SM, Krull KR, et al. Long-term neurologic health and psychosocial function of adult survivors of childhood medulloblastoma/PNET: a report from the Childhood Cancer Survivor Study. Neuro-Oncology. England. 2017;19:689–98.

    PubMed  Google Scholar 

  27. Wells EM, Ullrich NJ, Seidel K, Leisenring W, Sklar CA, Armstrong GT, et al. Longitudinal assessment of late-onset neurologic conditions in survivors of childhood central nervous system tumors: a Childhood Cancer Survivor Study report. Neuro-Oncology England. 2018;20:132–42.

    Article  PubMed  Google Scholar 

  28. Mabbott DJD, Penkman L, Witol A, Strother D, Bouffet E. Core neurocognitive functions in children treated for posterior fossa tumors. Neuropsychology United States. 2008;22:159–68.

    Article  PubMed  Google Scholar 

  29. Mulhern RK, Palmer SL, Merchant TE, Wallace D, Kocak M, Brouwers P, et al. Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. J Clin Oncol. United States. 2005;23:5511–9.

    Article  PubMed  Google Scholar 

  30. Palmer SL, Goloubeva O, Reddick WE, Glass JO, Gajjar A, Kun L, et al. Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol United States. 2001;19:2302–8.

    Article  CAS  PubMed  Google Scholar 

  31. Saury J-MG, Emanuelson I. Cognitive consequences of the treatment of medulloblastoma among children. Pediatr Neurol United States. 2011;44:21–30.

    Article  PubMed  Google Scholar 

  32. Palmer SL, Armstrong C, Onar-Thomas A, Wu S, Wallace D, Bonner MJ, et al. Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. J Clin Oncol. United States. 2013;31:3494–500.

    Article  PubMed  Google Scholar 

  33. Fry AF, Hale S. Relationships among processing speed, working memory, and fluid intelligence in children. Biol Psychol. 2000;54:1–34.

    Article  CAS  PubMed  Google Scholar 

  34. King TZ, Ailion AS, Fox ME, Hufstetler SM. Neurodevelopmental model of long-term outcomes of adult survivors of childhood brain tumors. Child Neuropsychol Routledge. 2017;00:1–21.

    Google Scholar 

  35. Palmer SL. Neurodevelopmental impact on children treated for medulloblastoma: a review and proposed conceptual model. Dev Disabil Res Rev United States. 2008;14:203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wolfe KR, Madan-Swain A, Kana RK. Executive dysfunction in pediatric posterior fossa tumor survivors: a systematic literature review of neurocognitive deficits and interventions. Dev Neuropsychol England. 2012;37:153–75.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hoang DH, Pagnier A, Guichardet K, Dubois-Teklali F, Schiff I, Lyard G, et al. Cognitive disorders in pediatric medulloblastoma: what neuroimaging has to offer. J Neurosurg Pediatr. United States. 2014;14:136–44.

    Article  PubMed  Google Scholar 

  38. Moxon-Emre I, Bouffet E, Taylor MD, Laperriere N, Sharpe MB, Laughlin S, et al. Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. J Neurosurg Pediatr United States. 2016;18:29–40.

    Article  PubMed  Google Scholar 

  39. Thust SC, Blanco E, Michalski AJ, Chong WK, Gaze MN, Phipps K, et al. MRI abnormalities in children following sequential chemotherapy, hyperfractionated accelerated radiotherapy and high-dose thiotepa for high-risk primitive neuroectodermal tumours of the central nervous system. J Med Imaging Radiat Oncol Australia. 2014;58:683–90.

    Article  PubMed  Google Scholar 

  40. Uh J, Merchant TE, Li Y, Feng T, Gajjar A, Ogg RJ, et al. Differences in brainstem fiber tract response to radiation: a longitudinal diffusion tensor imaging study. Int J Radiat Oncol Biol Phys. United States. 2013;86:292–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Reddick WE, Russell JM, Glass JO, Xiong X, Mulhern RK, Langston JW, et al. Subtle white matter volume differences in children treated for medulloblastoma with conventional or reduced dose craniospinal irradiation. Magn Reson Imaging. 2000;18:787–93.

    Article  CAS  PubMed  Google Scholar 

  42. Duncan EC, Reddick WE, Glass JO, Hyun JW, Ji Q, Li Y, et al. Application of probabilistic fiber-tracking method of MR imaging to measure impact of cranial irradiation on structural brain connectivity in children treated for medulloblastoma. Med Imaging 2016 Biomed Appl Mol Struct Funct Imaging. 2016.

  43. Nagtegaal SHJ, David S, van der Boog ATJ, Leemans A, Verhoeff JJC. Changes in cortical thickness and volume after cranial radiation treatment: a systematic review. Radiother Oncol. 2019;135:33–42.

    Article  PubMed  Google Scholar 

  44. Riggs L, Bouffet E, Laughlin S, Laperriere N, Liu F, Skocic J, et al. Changes to memory structures in children treated for posterior fossa tumors. J Int Neuropsychol Soc. 2014;20:168–80.

    Article  PubMed  Google Scholar 

  45. Palmer SL, Reddick WE, Glass JO, Ogg R, Patay Z, Wallace D, et al. Regional white matter anisotropy and reading ability in patients treated for pediatric embryonal tumors. Brain Imaging Behav United States. 2010;4:132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Palmer SL, Glass JO, Li Y, Ogg R, Qaddoumi I, Armstrong GT, et al. White matter integrity is associated with cognitive processing in patients treated for a posterior fossa brain tumor. Neuro-Oncology. England. 2012;14:1185–93.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mulhern RK, Reddick WE, Palmer SL, Glass JO, Elkin TD, Kun LE, et al. Neurocognitive deficits in medulloblastoma survivors and white matter loss. Ann Neurol United States. 1999;46:834–41.

    Article  CAS  PubMed  Google Scholar 

  48. Shan ZY, Liu JZ, Glass JO, Gajjar A, Li C-S, Reddick WE. Quantitative morphologic evaluation of white matter in survivors of childhood medulloblastoma. Magn Reson Imaging Netherlands. 2006;24:1015–22.

    Article  PubMed  Google Scholar 

  49. Riva D, Giorgi C, Nichelli F, Bulgheroni S, Massimino M, Cefalo G, et al. Intrathecal methotrexate affects cognitive function in children with medulloblastoma. Neurology United States. 2002;59:48–53.

    Article  CAS  PubMed  Google Scholar 

  50. Fouladi M, Chintagumpala M, Laningham FH, Ashley D, Kellie SJ, Langston JW, et al. White matter lesions detected by magnetic resonance imaging after radiotherapy and high-dose chemotherapy in children with medulloblastoma or primitive neuroectodermal tumor. J Clin Oncol. United States. 2004;22:4551–60.

    Article  PubMed  Google Scholar 

  51. Khajuria RK, Blankenburg F, Wuithschick I, Rueckriegel S, Thomale U-W, Mansour M, et al. Morphological brain lesions of pediatric cerebellar tumor survivors correlate with inferior neurocognitive function but do not affect health-related quality of life. Childs Nerv Syst Germany. 2015;31:569–80.

    Article  PubMed  Google Scholar 

  52. Glass JO, Ogg RJ, Hyun JW, Harreld JH, Schreiber JE, Palmer SL, et al. Disrupted development and integrity of frontal white matter in patients treated for pediatric medulloblastoma. Neuro-Oncology. 2017;19:1408–18.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Decker AL, Szulc KU, Bouffet E, Laughlin S, Chakravarty MM, Skocic J, et al. Smaller hippocampal subfield volumes predict verbal associative memory in pediatric brain tumor survivors. Hippocampus United States. 2017;27:1140–54.

    Article  CAS  PubMed  Google Scholar 

  54. Szychot E, Seunarine K, Mankad K, Thust S, Clark C, Gaze MN, et al. Impact of induction chemotherapy, hyperfractionated accelerated radiotherapy and high-dose thiotepa on brain volume loss and functional status of children with primitive neuroectodermal tumour. Pediatr Blood Cancer United States. 2017;64.

  55. Hoang DH, Pagnier A, Cousin E, Guichardet K, Schiff I, Icher C, et al. Anatomo-functional study of the cerebellum in working memory in children treated for medulloblastoma. J Neuroradiol Elsevier Masson SAS. 2019;46:207–13.

    Article  PubMed  Google Scholar 

  56. Aukema EJ, Caan MWA, Oudhuis N, Majoie CBLM, Vos FM, Reneman L, et al. White matter fractional anisotropy correlates with speed of processing and motor speed in young childhood cancer survivors. Int J Radiat Oncol Biol Phys. 2009;74:837–43.

    Article  PubMed  Google Scholar 

  57. Khong P-L, Leung LHT, Fung ASM, Fong DYT, Qiu D, Kwong DLW, et al. White matter anisotropy in post-treatment childhood cancer survivors: preliminary evidence of association with neurocognitive function. J Clin Oncol. United States. 2006;24:884–90.

    Article  PubMed  Google Scholar 

  58. Mabbott DJ, Noseworthy MD, Bouffet E, Rockel C, Laughlin S. Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro-Oncology. 2006;8:244–52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Khong P-L, Kwong DLW, Chan GCF, Sham JST, Chan F-L, Ooi G-C. Diffusion-tensor imaging for the detection and quantification of treatment-induced white matter injury in children with medulloblastoma: a pilot study. AJNR Am J Neuroradiol United States. 2003;24:734–40.

    PubMed  PubMed Central  Google Scholar 

  60. Rueckriegel SM, Bruhn H, Thomale UW, Hernaiz Driever P. Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivors. Pediatr Blood Cancer. United States. 2015;62:1252–8.

    Article  PubMed  Google Scholar 

  61. Law N, Smith ML, Greenberg M, Bouffet E, Taylor MD, Laughlin S, et al. Executive function in paediatric medulloblastoma: the role of cerebrocerebellar connections. J Neuropsychol England. 2017;11:174–200.

    Article  PubMed  Google Scholar 

  62. Li MD, Forkert ND, Kundu P, Ambler C, Lober RM, Burns TC, et al. Brain perfusion and diffusion abnormalities in children treated for posterior fossa brain tumors. J Pediatr. 2017;185:173–180.e3.

    Article  CAS  PubMed  Google Scholar 

  63. Brinkman TM, Reddick WE, Luxton J, Glass JO, Sabin ND, Srivastava DK, et al. Cerebral white matter integrity and executive function in adult survivors of childhood medulloblastoma. Neuro-Oncology. England. 2012;14(Suppl 4):iv25–36.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yeom KW, Lober RM, Partap S, Telischak N, Tsolinas R, Barnes PD, et al. Increased focal hemosiderin deposition in pediatric medulloblastoma patients receiving radiotherapy at a later age: clinical article. J Neurosurg Pediatr. 2013;12:444–51.

    Article  PubMed  Google Scholar 

  65. Zou P, Conklin HM, Scoggins MA, Li Y, Li X, Jones MM, et al. Functional MRI in medulloblastoma survivors supports prophylactic reading intervention during tumor treatment. Brain Imaging Behav. 2016;10:258–71.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kates R, Atkinson D, Brant-Zawadzki M. Fluid-attenuated inversion recovery (FLAIR): clinical prospectus of current and future applications. Top Magn Reson Imaging United States. 1996;8:389–96.

    Article  CAS  PubMed  Google Scholar 

  67. Mulhern RK, Palmer SL, Reddick WE, Glass JO, Kun LE, Taylor J, et al. Risks of young age for selected neurocognitive deficits in medulloblastoma are associated with white matter loss. J Clin Oncol. United States. 2001;19:472–9.

    Article  CAS  PubMed  Google Scholar 

  68. Debnam JM, Schellingerhout D. Diffusion MR imaging of the brain in patients with cancer. Int J Mol Imaging. 2011;2011:714021.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sener RN. Diffusion MRI: apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput Med Imaging Graph United States. 2001;25:299–326.

    Article  CAS  PubMed  Google Scholar 

  70. Ravn S, Holmberg M, Sorensen P, Frokjaer JB, Carl J. Differences in supratentorial white matter diffusion after radiotherapy--new biomarker of normal brain tissue damage? Acta Oncol. England. 2013;52:1314–9.

    Article  PubMed  Google Scholar 

  71. Hua C, Merchant TE, Gajjar A, Broniscer A, Zhang Y, Li Y, et al. Brain tumor therapy-induced changes in normal-appearing brainstem measured with longitudinal diffusion tensor imaging. Int J Radiat Oncol Biol Phys. United States. 2012;82:2047–54.

    Article  PubMed  Google Scholar 

  72. Leung LHT, Ooi GC, Kwong DLW, Chan GCF, Cao G, Khong PL. White-matter diffusion anisotropy after chemo-irradiation: a statistical parametric mapping study and histogram analysis. Neuroimage. 2004;21:261–8.

    Article  PubMed  Google Scholar 

  73. Qiu D, Kwong DLW, Chan GCF, Leung LHT, Khong PL. Diffusion tensor magnetic resonance imaging finding of discrepant fractional anisotropy between the frontal and parietal lobes after whole-brain irradiation in childhood medulloblastoma survivors: reflection of regional white matter radiosensitivity? Int J Radiat Oncol Biol Phys. 2007;69:846–51.

    Article  PubMed  Google Scholar 

  74. Rueckriegel SM, Driever PH, Blankenburg F, Lüdemann L, Henze G, Bruhn H. Differences in Supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. Int J Radiat Oncol Biol Phys. 2010;76:859–66.

    Article  PubMed  Google Scholar 

  75. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. United States. 2013;34:1866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. United States. 1990;87:9868–72.

    Article  CAS  PubMed  Google Scholar 

  77. Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage. United States. 2018.

  78. Passos J, Nzwalo H, Valente M, Marques J, Azevedo A, Netto E, et al. Microbleeds and cavernomas after radiotherapy for paediatric primary brain tumours. J Neurol Sci. 2017;372:413–6.

    Article  PubMed  Google Scholar 

  79. Miura M, Nakajima M, Fujimoto A, Kaku Y, Kawano T, Watanabe M, et al. High prevalence of small vessel disease long after cranial irradiation. J Clin Neurosci. Scotland. 2017;46:129–35.

    Article  PubMed  Google Scholar 

  80. Humphries TJ, Mathew P. Cerebral microbleeds: hearing through the silence – a narrative review. Curr Med Res Opin. Taylor & Francis. 2018;0:1–15.

  81. Passos J, Nzwalo H, Marques J, Azevedo A, Netto E, Nunes S, et al. Late cerebrovascular complications after radiotherapy for childhood primary central nervous system tumors. Pediatr Neurol. 2015;53:211–5.

    Article  PubMed  Google Scholar 

  82. Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol Elsevier Ltd. 2009;8:165–74.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tsui Y-K, Tsai FY, Hasso AN, Greensite F, Nguyen BV. Susceptibility-weighted imaging for differential diagnosis of cerebral vascular pathology: a pictorial review. J Neurol Sci. Netherlands. 2009;287:7–16.

    Article  PubMed  Google Scholar 

  84. Palmer SL, Reddick WE, Glass JO, Gajjar A, Goloubeva O, Mulhern RK. Decline in corpus callosum volume among pediatric patients with medulloblastoma: longitudinal MR imaging study. AJNR Am J Neuroradiol. 2002;23:1088–94.

    PubMed  PubMed Central  Google Scholar 

  85. Othman RT, Abdullah KG. Serial MRI scan of posterior fossa tumours predict patients at risk of developing neurocognitive impairment. Asian Pac J Cancer Prev. 2017.

  86. Papathanasiou A, Messinis L, Zampakis P, Papathanasopoulos P. Corpus callosum atrophy as a marker of clinically meaningful cognitive decline in secondary progressive multiple sclerosis. Impact on employment status. J Clin Neurosci Off J Neurosurg Soc Australas. Scotland. 2017;43:170–5.

    Google Scholar 

  87. Manca R, Sharrack B, Paling D, Wilkinson ID, Venneri A. Brain connectivity and cognitive processing speed in multiple sclerosis: a systematic review. J Neurol Sci Netherlands. 2018;388:115–27.

    Article  PubMed  Google Scholar 

  88. Owens JA, Spitz G, Ponsford JL, Dymowski AR, Willmott C. An investigation of white matter integrity and attention deficits following traumatic brain injury. Brain Inj England. 2018;32:776–83.

    Article  PubMed  Google Scholar 

  89. Nagel BJ, Palmer SL, Reddick WE, Glass JO, Helton KJ, Wu S, et al. Abnormal hippocampal development in children with medulloblastoma treated with risk-adapted irradiation. AJNR Am J Neuroradiol. 2004;25:1575–82.

    PubMed  PubMed Central  Google Scholar 

  90. Liu AK, Marcus KJ, Fischl B, Grant PE, Young Poussaint T, Rivkin MJ, et al. Changes in cerebral cortex of children treated for medulloblastoma. Int J Radiat Oncol Biol Phys. 2007.

  91. Palmer SL, Leigh L, Ellison SC, Onar-Thomas A, Wu S, Qaddoumi I, et al. Feasibility and efficacy of a computer-based intervention aimed at preventing reading decoding deficits among children undergoing active treatment for medulloblastoma: results of a randomized trial. J Pediatr Psychol United States. 2014;39:450–8.

    Article  PubMed  Google Scholar 

  92. Szulc-Lerch KU, Timmons BW, Bouffet E, Laughlin S, de Medeiros CB, Skocic J, et al. Repairing the brain with physical exercise: cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention. NeuroImage Clin. 2018;18:972–85.

    Article  PubMed  Google Scholar 

  93. Riggs L, Piscione J, Laughlin S, Cunningham T, Timmons BW, Courneya KS, et al. Exercise training for neural recovery in a restricted sample of pediatric brain tumor survivors: a controlled clinical trial with crossover of training versus no training. Neuro-Oncology. England. 2017;19:440–50.

    PubMed  Google Scholar 

  94. Conklin HM, Ogg RJ, Ashford JM, Scoggins MA, Zou P, Clark KN, et al. Computerized cognitive training for amelioration of cognitive late effects among childhood Cancer survivors: a randomized controlled trial. J Clin Oncol. United States. 2015;33:3894–902.

    Article  PubMed  Google Scholar 

  95. Neu MA, Tanyildizi Y, Wingerter A, Henninger N, El Malki K, Alt F, et al. Susceptibility-weighted magnetic resonance imaging of cerebrovascular sequelae after radiotherapy for pediatric brain tumors. Radiother Oncol Ireland. 2018;127:280–6.

    Article  PubMed  Google Scholar 

  96. Nieman BJ, Elizabeth De Guzman A, Gazdzinski LM, Lerch JP, Mallar Chakravarty M, Pipitone J, et al. White and gray matter abnormalities after cranial radiation in children and mice. Int J Radiat Oncol Biol Phys. 2015.

Download references

Funding

Kinderkankerfonds Leuven

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Sleurs.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wauters, M., Uyttebroeck, A., De Waele, L. et al. Neuroimaging Biomarkers and Neurocognitive Outcomes in Pediatric Medulloblastoma Patients: a Systematic Review. Cerebellum 20, 462–480 (2021). https://doi.org/10.1007/s12311-020-01225-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01225-4

Keywords

Navigation