Skip to main content

Advertisement

Log in

Volumetric MRI Changes in Spinocerebellar Ataxia (SCA3 and SCA10) Patients

  • Original paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Spinocerebellar ataxias type 3 (SCA3) and type 10 (SCA10) are the most prevalent in southern Brazil. To analyze the relationships between volumetric MRI changes and clinical and genetic findings in SCA3 and SCA10 patients. All patients in the study had a confirmed genetic diagnosis. Demographic data, ataxia severity (SARA score), and the size of the expanded alleles were evaluated. Nineteen SCA3 and 18 SCA10 patients were selected and compared with a similar number of healthy controls. Patient and control groups underwent the same MRI protocol. The standard FreeSurfer pipeline was used for the morphometric data. Our results show more affected brain structures (volume reductions) in SCA3 patients than in SCA10 patients (15 vs. 5 structures). Volume reductions in brain structures were also greater in the former. The main areas with significant volumetric reductions in the former were the cerebellum, basal ganglia, brain stem, and diencephalon, whereas in the latter, significant volume reductions were observed in the cerebellum and pallidum. While SARA scores and disease duration were more correlated with volume reduction in SCA10, in SCA3, the expansion length (CAGn) correlated positively with cerebellar WM, thalamus, brain stem, and total GM volumes. There was no correlation between expansion length (ATTCTn) and neuroimaging findings in SCA10. Neuroimaging results differed significantly between SCA3 and SCA10 patients and were compatible with the differences in clinical presentation, disease progression, and molecular findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Schols L, Bauer P, Schmidt T, Schulte T, Riess O. Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol. 2004;3:291–4.

    Article  PubMed  Google Scholar 

  2. Bird T. Hereditary ataxia overview. Ncbi.nlm.nih.gov. 2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/

  3. Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol. 2015;28:413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moro A, Munhoz RP, Moscovich M, Arruda WO, Raskin S, Silveira-Moriyama L, et al. Nonmotor symptoms in patients with spinocerebellar ataxia type 10. Cerebellum. 2017;6:1–7.

    Google Scholar 

  5. Ashizawa T. Spinocerebellar ataxia type 10. Handb Clin Neurol. 2012;103:507–19.

    Article  PubMed  Google Scholar 

  6. Teive HAG, Roa BB, Raskin S, Fang P, Arruda WO, Neto YC, et al. Clinical phenotype of Brazilian families with spinocerebellar ataxia 10. Neurology. 2004;63(8):1509–12.

    Article  CAS  PubMed  Google Scholar 

  7. Döhlinger S, Hauser T, Borkert J, Luft AR, Schulz JB. Magnetic resonance imaging in spinocerebellar ataxias. Cerebellum. 2008;7(2):204–14.

    Article  PubMed  Google Scholar 

  8. Kang J-S, Klein JC, Baudrexel S, Deichmann R, Nolte D, Hilker R. White matter damage is related to ataxia severity in SCA3. J Neurol. 2014;261(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  9. Rasmussen A, Matsuura T, Ruano L, Yescas P, Ochoa A, Ashizawa T, et al. Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol. 2001;50(2):234–9.

    Article  CAS  PubMed  Google Scholar 

  10. Jacobi H, Hauser TK, Giunti P, Globas C, Bauer P, Schmitz-Hübsch T, et al. Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brain stem and cerebellar findings. Cerebellum. 2012;11(1):155–66.

    Article  PubMed  Google Scholar 

  11. Huang SR, Wu YT, Jao CW, Soong BW, Lirng JF, Wu HM, et al. CAG repeat length does not associate with the rate of cerebellar degeneration in spinocerebellar ataxia type 3. Neuroimage Clin. 2016;10(13):97–105.

    Google Scholar 

  12. Camargos ST, Marques-Jr W, Santos AC. Brain stem and cerebellum volumetric analysis of Machado Joseph disease patients. Arq Neuropsiquiatr. 2011;69(2b):292–6.

    Article  PubMed  Google Scholar 

  13. Stefanescu MR, Dohnalek M, Maderwald S, Thürling M, Minnerop M, Beck A, et al. Structural and functional MRI abnormalities of cerebellar cortex and nuclei in SCA3, SCA6 and Friedreich's ataxia. Brain. 2015;138(Pt 5):1182–97.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Klaes A, Reckziegel E, Franca MC, Rezende TJR, Vedolin LM, Jardim LB, et al. MR imaging in spinocerebellar ataxias: a systematic review. AJNR Am J Neuroradiol. 2016;37(8):1405–12.

    Article  CAS  PubMed  Google Scholar 

  15. Schmitz-Hübsch T, Tezenas du Montcel S, Baliko L, Boesch S, Bonato S, Fancellu R, et al. Reliability and validity of the International Cooperative Ataxia Rating Scale: a study in 156 spinocerebellar ataxia patients. Mov Disord. 2006;21(5):699–704.

    Article  PubMed  Google Scholar 

  16. Braga-Neto P, Godeiro-Junior C, Dutra LA, Pedroso JL, Barsottini OGP. Translation and validation into Brazilian version of the Scale of the Assessment and Rating of Ataxia (SARA). Arq Neuropsiquiatr. 2010;68:228–30.

    Article  PubMed  Google Scholar 

  17. Wessa P. Free Statistics Software, Office for Research Development and Education, version 1.2.1, 2019. Available from: https://www.wessa.net/

  18. Fischl B. FreeSurfer. FreeSurfer Neuroimage. 2012 Aug 15;62(2):774–81. https://doi.org/10.1016/j.neuroimage.2012.01.021.

    Article  PubMed  Google Scholar 

  19. Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61(4):1402–18.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fahl CN, Branco LMT, Bergo FPG, D’Abreu A, Lopes-Cendes I, França MC. Spinal cord damage in Machado-Joseph disease. Cerebellum. 2015;14(2):128–32.

    Article  CAS  PubMed  Google Scholar 

  21. Hernandez-Castillo CR, Diaz R, Vaca-Palomares I, Torres DL, Chirino A, Campos-Romo A, et al. Extensive cerebellar and thalamic degeneration in spinocerebellar ataxia type 10. Parkinsonism Relat Disord. 2019 Sep;66:182–8. https://doi.org/10.1016/j.parkreldis.2019.08.011.

    Article  PubMed  Google Scholar 

  22. McFarland KN, Liu J, Landrian I, Gao R, Sarkar PS, Raskin S, et al. Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur J Hum Genet. 2013;21(11):1272–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rezende TJR, de Paiva JLR, Martinez ARM, Lopes-Cendes I, Pedroso JL, Barsottini OGP, et al. Structural signature of SCA3: from presymptomatic to late disease stages. Ann Neurol. 2018;84(3):401–8.

    Article  PubMed  Google Scholar 

  24. Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909.

    Google Scholar 

  25. Nascimento FA, Rodrigues VOR, Pelloso FC, Camargo CHF, Moro A, Raskin S, et al. Spinocerebellar ataxias in southern Brazil: genotypic and phenotypic evaluation of 213 families. Clin Neurol Neurosurg. 2019;184:105427.

    Article  PubMed  Google Scholar 

  26. Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia: a preliminary characterization. J Neurol. 2008;255(3):398–405.

    Article  CAS  PubMed  Google Scholar 

  27. Bürk K, Globas C, Bösch S, Klockgether T, Zühlke C, Daum I, et al. Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3. J Neurol. 2003;250(2):207–11.

    Article  PubMed  Google Scholar 

  28. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2017;141(1):248–70.

    Article  PubMed Central  Google Scholar 

  29. D’Abreu A, França MC Jr, Yasuda CL, Campos BA, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging. 2012;22(3):285–91.

    Article  PubMed  Google Scholar 

  30. Coutinho P, Guimarães A, Scaravilli F. The pathology of Machado-Joseph disease. Report of a possible homozygous case. Acta Neuropathol. 1982;58(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  31. Lukas C, Schöls L, Bellenberg B, Rüb U, Przuntek H, Schmid G, et al. Dissociation of grey and white matter reduction in spinocerebellar ataxia type 3 and 6: a voxel-based morphometry study. Neurosci Lett. 2006;408:230–5.

    Article  CAS  PubMed  Google Scholar 

  32. Schulz JB, Borkert J, Wolf S, Schmitz-Hübsch T, Rakowicz M, Mariotti C, et al. Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage. 2010;49(1):158–68.

    Article  PubMed  Google Scholar 

  33. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, et al. Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol. 1997;41(4):453–62.

    Article  CAS  PubMed  Google Scholar 

  34. Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, et al. First report of a Japanese family with spinocerebellar ataxia type 10: the second report from Asia after a report from China. PLoS One. 2017;12(5):e0177955.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang K, McFarland KN, Liu J, Zeng D, Landrian I, Xia G, et al. Spinocerebellar ataxia type 10 in Chinese Han. Neurol Genet. 2015;1(3):e26.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio Afonso Ghizoni Teive.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arruda, W.O., Meira, A.T., Ono, S.E. et al. Volumetric MRI Changes in Spinocerebellar Ataxia (SCA3 and SCA10) Patients. Cerebellum 19, 536–543 (2020). https://doi.org/10.1007/s12311-020-01137-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01137-3

Keywords

Navigation