Skip to main content
Log in

New Cerebello-Cortical Pathway Involved in Higher-Order Oculomotor Control

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum and the basal ganglia play an important role in the control of voluntary eye movement associated with complex behavior, but little is known about how cerebellar projections project to cortical eye movement areas. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to supplementary eye field (SEF) of the frontal cortex of macaques. After rabies injections into the SEF, many neurons in the restricted region, the ventral aspects of the dentate nucleus (DN), the caudal pole of the DN, and the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN). The distribution of the labeled neurons was dorsoventrally different from that of DN and PIN neurons labeled from the motor cortex. In the basal ganglia, a large number of labeled neurons were confined to the dorsomedial portion of the internal segment of the globus pallidus (GPi) as more neurons were labeled in the inner portion of the GPi (GPii) than in the outer portion of the GPi (GPio). This is the first evidence of a projection between cerebellum/basal ganglia and the SEF that could enable the cerebellum to modulate the cognitive control of voluntary eye movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.  4

Similar content being viewed by others

References

  1. Raymond JL, Lisberger SG, Mauk MD. The cerebellum: a neuronal learning machine? Science. 1996;272:1126–31.

    Article  CAS  PubMed  Google Scholar 

  2. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79.

    Article  PubMed  Google Scholar 

  3. Wolpert DM, Ghahramani Z. Computational principles of movement neuroscience. Nat Neurosci. 2000;3(Suppl):1212–7.

    Article  CAS  PubMed  Google Scholar 

  4. Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162:549–59.

    Article  CAS  PubMed  Google Scholar 

  5. Voogd J, Ruigrok TJH. Cerebellum and precerebellar nuclei. In: Mai JK, Paxinos G, editors. The Human Nervous System. London: Elsevier; 2012. p. 472–545.

    Google Scholar 

  6. Wang SS, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron. 2014;83:518–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Streng ML, Popa LS, Ebner TJ. Modulation of sensory prediction error in Purkinje cells during visual feedback manipulations. Nat Commun. 2018;9:1099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Keele SW, Ivry R. Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Ann N Y Acad Sci. 1990;608:179–207 discussion −11.

    Article  CAS  PubMed  Google Scholar 

  9. Ito M. Long-term depression. Annu Rev Neurosci. 1989;12:85–102.

    Article  CAS  PubMed  Google Scholar 

  10. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  CAS  PubMed  Google Scholar 

  11. Shidara M, Kawano K, Gomi H, Kawato M. Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365:50–2.

    Article  CAS  PubMed  Google Scholar 

  12. De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK. Spatiotemporal firing patterns in the cerebellum. Nature reviews. 2001;12:327–44.

    Article  CAS  Google Scholar 

  13. Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, et al. A cortico-cerebellar loop for motor planning. Nature. 2018;563:113–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266:458–61.

    Article  CAS  PubMed  Google Scholar 

  15. Lu X, Miyachi S, Takada M. Anatomical evidence for the involvement of medial cerebellar output from the interpositus nuclei in cognitive functions. Proc Natl Acad Sci U S A. 2012;109:18980–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chabrol FP, Blot A, Mrsic-Flogel TD. Cerebellar contribution to preparatory activity in motor neocortex. Neuron. 2019;103:506–19 e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hikosaka O, Takikawa Y, Kawagoe R. Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev. 2000;80:953–78.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.

    Article  CAS  PubMed  Google Scholar 

  19. Dimitrova A, Weber J, Maschke M, Elles HG, Kolb FP, Forsting M, et al. Eyeblink-related areas in human cerebellum as shown by fMRI. Hum Brain Mapp. 2002;17(2):100–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gerwig M, Dimitrova A, Kolb FP, Maschke M, Brol B, Kunnel A, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126(Pt 1):71–94.

    Article  CAS  PubMed  Google Scholar 

  21. Ivry RB, Diener HC. Impaired velocity perception in patients with lesions of the cerebellum. J Cogn Neurosci. 1991;3:355–66.

    Article  CAS  PubMed  Google Scholar 

  22. Thier P, Haarmeier T, Treue S, Barash S. Absence of a common functional denominator of visual disturbances in cerebellar disease. Brain. 1999;122(Pt 11):2133–46.

    Article  PubMed  Google Scholar 

  23. Ravizza SM, McCormick CA, Schlerf JE, Justus T, Ivry RB, Fiez JA. Cerebellar damage produces selective deficits in verbal working memory. Brain. 2006;129:306–20.

    Article  PubMed  Google Scholar 

  24. King S, Chen AL, Joshi A, Serra A, Leigh RJ. Effects of cerebellar disease on sequences of rapid eye movements. Vis Res. 2011;51:1064–74.

    Article  PubMed  Google Scholar 

  25. Baizer JS, Glickstein M. Proceedings: role of cerebellum in prism adaptation. J Physiol. 1974;236:34P–5P.

    CAS  PubMed  Google Scholar 

  26. Drepper J, Timmann D, Kolb FP, Diener HC. Non-motor associative learning in patients with isolated degenerative cerebellar disease. Brain. 1999;122(Pt 1):87–97.

    Article  PubMed  Google Scholar 

  27. Schmahmann JD, Pandya DN. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex. 2008;44:1037–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Handel B, Thier P, Haarmeier T. Visual motion perception deficits due to cerebellar lesions are paralleled by specific changes in cerebro-cortical activity. J Neurosci. 2009;29:15126–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Krauzlis RJ, Lisberger SG. Visual motion commands for pursuit eye movements in the cerebellum. Science. 1991;253:568–71.

    Article  CAS  PubMed  Google Scholar 

  30. Lu X, Hikosaka O, Miyachi S. Role of monkey cerebellar nuclei in skill for sequential movement. J Neurophysiol. 1998;79:2245–54.

    Article  CAS  PubMed  Google Scholar 

  31. Medina JF, Lisberger SG. Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nat Neurosci. 2008;11:1185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18:1798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Llinas R, Baker R, Sotelo C. Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol. 1974;37:560–71.

    Article  CAS  PubMed  Google Scholar 

  34. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53:427–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ivry RB, Schlerf JE. Dedicated and intrinsic models of time perception. Trends Cogn Sci. 2008;12:273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Llinas RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience. 2009;162:797–804.

    Article  CAS  PubMed  Google Scholar 

  37. Buonomano DV, Laje R. Population clocks: motor timing with neural dynamics. Trends Cogn Sci. 2010;14:520–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu X, Ashe J, Bushara KO. Role of olivocerebellar system in timing without awareness. Proc Natl Acad Sci U S A. 2011;108:13818–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ohmae S, Uematsu A, Tanaka M. Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J Neurosci. 2013;33:15432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Puri S, Shaikh AG. Basic and translational neuro-ophthalmology of visually guided saccades: disorders of velocity. Phthalmol. 2017;12(6):457–73.

    CAS  Google Scholar 

  41. Kato M, Miyashita N, Hikosaka O, Matsumura M, Usui S, Kori A. Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. J Neurosci. 1995;15:912–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sakashita Y. Visual attentional disturbance with unilateral lesions in the basal ganglia and deep white matter. Ann Neurol. 1991;30:673–7.

    Article  CAS  PubMed  Google Scholar 

  43. Villardita C, Smirni P, Zappala G. Visual neglect in Parkinson’s disease. Arch Neurol. 1983;40:737–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hikosaka O, Sakamoto M, Usui S. Functional properties of monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol. 1989;61:780–98.

    Article  CAS  PubMed  Google Scholar 

  45. Apicella P, Scarnati E, Ljungberg T, Schultz W. Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol. 1992;68:945–60.

    Article  CAS  PubMed  Google Scholar 

  46. Menon V, Glover GH, Pfefferbaum A. Differential activation of dorsal basal ganglia during externally and self-paced sequences of arm movements. Neuroreport. 1998;9:1567–73.

    Article  CAS  PubMed  Google Scholar 

  47. Jenkins IH, Brooks DJ, Nixon PD, Frackowia RSJ, Passingham RE. Motor sequence learning: a study with positron emission tomography. J Neurosci. 1994;14:3775–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petit L, Orssaud C, Tzourio N, Crivello F, Berthoz A, Mazoyer B. Functional anatomy of a prelearned sequence of horizontal saccades in humans. J Neurosci. 1996;16:3714–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol. 1998;80:1–27.

    Article  CAS  PubMed  Google Scholar 

  50. Olson CR, Gettner SN. Object-centered direction selectivity in the macaque supplementary eye field. Science. 1995;269:985–8.

    Article  CAS  PubMed  Google Scholar 

  51. Chen LL, Wise SP. Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurosci. 1996;16:3067–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schlag-Rey M, Amador N, Sanchez H, Schlag J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature. 1997;390:398–401.

    Article  CAS  PubMed  Google Scholar 

  53. Missal M, Heinen SJ. Supplementary eye fields stimulation facilitates anticipatory pursuit. J Neurophysiol. 2004;92:1257–62.

    Article  CAS  PubMed  Google Scholar 

  54. Stuphorn V, Taylor TL, Schall JD. Performance monitoring by the supplementary eye field. Nature. 2000;408:857–60.

    Article  CAS  PubMed  Google Scholar 

  55. Lu X, Matsuzawa M, Hikosaka O. A neural correlate of oculomotor sequences in supplementary eye field. Neuron. 2002;34:317–25.

    Article  CAS  PubMed  Google Scholar 

  56. Amador N, Schlag-Rey M, Schlag J. Primate antisaccade. II. Supplementary eye field neuronal activity predicts correct performance. J Neurophysiol. 2004;91:1672–89.

    Article  PubMed  Google Scholar 

  57. Stuphorn V, Schall JD. Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci. 2006;9:925–31.

    Article  CAS  PubMed  Google Scholar 

  58. Uchida Y, Lu X, Ohmae S, Takahashi T, Kitazawa S. Neuronal activity related to reward size and rewarded target position in primate supplementary eye field. J Neurosci. 2007;27:13750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Histed MH, Miller EK. Microstimulation of frontal cortex can reorder a remembered spatial sequence. PLoS Biol. 2006;4:e134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Lu X, Miyachi S, Ito Y, Nambu A, Takada M. Topographic distribution of output neurons in cerebellar nuclei and cortex to somatotopic map of primary motor cortex. Eur J Neurosci. 2007;25:2374–82.

    Article  PubMed  Google Scholar 

  61. Schlag J, Schlag-Rey M. Evidence for a supplementary eye field. J Neurophysiol. 1987;57:179–200.

    Article  CAS  PubMed  Google Scholar 

  62. Matelli M, Luppino G. Thalamic input to mesial and superior area 6 in the macaque monkey. J Comp Neurol. 1996;372:59–87.

    Article  CAS  PubMed  Google Scholar 

  63. Person AL, Gale SD, Farries MA, Perkel DJ. Organization of the songbird basal ganglia, Including Area X. J Comp Neurol. 2008;508(5):840–66.

    Article  PubMed  Google Scholar 

  64. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 1983;286:237–65.

    Article  CAS  PubMed  Google Scholar 

  65. Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxidase and fluorescent dye double staining study. Brain Res. 1992;579:315–20.

    Article  CAS  PubMed  Google Scholar 

  66. Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.

    Article  PubMed  Google Scholar 

  67. Akkal D, Dum RP, Strick PL. Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output. J Neurosci. 2007;27:10659–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nature reviews. 2005;6:297–311.

    Article  CAS  PubMed  Google Scholar 

  69. Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20:214–28.

    Article  PubMed  Google Scholar 

  70. Gruart A, Guillazo-Blanch G, Fernandez-Mas R, Jimenez-Diaz L, Delgado-Garcia JM. Cerebellar posterior interpositus nucleus as an enhancer of classically conditioned eyelid responses in alert cats. J Neurophysiol. 2000;84:2680–90.

    Article  CAS  PubMed  Google Scholar 

  71. Park JS, Onodera T, Nishimura S, Thompson RF, Itohara S. Molecular evidence for two-stage learning and partial laterality in eyeblink conditioning of mice. Proc Natl Acad Sci U S A. 2006;103:5549–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoover JE, Strick PL. Multiple output channels in the basal ganglia. Science. 1993;259:819–21.

    Article  CAS  PubMed  Google Scholar 

  73. Corin MS, Elizan TS, Bender MB. Oculomotor function in patients with Parkinson's disease. J Neurol Sci. 1972;15:251–65.

    Article  CAS  PubMed  Google Scholar 

  74. Shaikh AG, Ghasia FF. Saccades in Parkinson's disease: hypometric, slow, and maladaptive. Prog Brain Res. 2019;249:81–94.

    Article  PubMed  Google Scholar 

  75. Starr A. A disorder of rapid eye movements in Huntington’s chorea. Brain. 1967;9:545–64.

    Article  Google Scholar 

  76. Butters N, Sax D, Montgomery K, Tarlow S. Comparison of the neuropsychological deficits associated with early and advanced Huntington's disease. Arch Neurol. 1978;35:585–9.

    Article  CAS  PubMed  Google Scholar 

  77. Damasio AR, Damasio H, Chui HC. Neglect following damage to frontal lobe or basal ganglia. Neuropsychologia. 1980;18:123–32.

    Article  CAS  PubMed  Google Scholar 

  78. Cummings JL. Frontal-subcortical circuits and human behavior. Arch Neurol. 1993;50:873–80.

    Article  CAS  PubMed  Google Scholar 

  79. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, et al. Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry. 1986;143:862–6.

    Article  CAS  PubMed  Google Scholar 

  80. Takarae Y, Minshew NJ, Luna B, Sweeney JA. Atypical involvement of frontostriatal systems during sensorimotor control in autism. Psychiatry Res. 2007;156:117–27.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Warabi T, Noda H, Yanagisawa N, Tashiro K, Shindo R. Changes in sensorimotor function associated with the degree of bradykinesia of Parkinson’s disease. Brain. 1986;109:1209–24.

    Article  PubMed  Google Scholar 

  82. Sailer U, Eggert T, Straube A. Impaired temporal prediction and eye-hand coordination in patients with cerebellar lesions. Behav Brain Res. 2005;160:72–87.

    Article  PubMed  Google Scholar 

  83. Miall RC, Reckess GZ, Imamizu H. The cerebellum coordinates eye and hand tracking movements. Nat Neurosci. 2001;4:638–44.

    Article  CAS  PubMed  Google Scholar 

  84. Mushiake H, Fujii N, Tanji J. Visually guided saccade versus eye-hand reach: contrasting neuronal activity in the cortical supplementary and frontal eye fields. J Neurophysiol. 1996;75:2187–91.

    Article  CAS  PubMed  Google Scholar 

  85. Lynch JC, Hoover JE, Strick PL. Input to the primate frontal eye field from the substantia nigra, superior colliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res. 1994;100:181–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Scientific Research (18500247 and 20500293) to X.L. from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

X.L. designed the study, performed all the physiological and anatomical procedures. KI, SO and YU performed parts of the experiment and data analysis and wrote the manuscript together with XL. We truly thank Dr. Okihide Hikosaka for helpful discussion on story, Dr. Masahiko Takada for providing the experimental environment for viral injection, and Drs. James Ashe and Masahiko Takada made the helpful comments on the manuscript. The authors have declared that no competing interests exist.

Corresponding author

Correspondence to Xiaofeng Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human performed by any of the authors. All procedures performed in studies involving animals were in accordance with the ethical standards of the Guiding Principles for the Care and Use of Animals, approved by the Council of the Physiological Society of Japan. All experiments were approved by the Committee for Animal Experimentation of Juntendo University School of Medicine and Tokyo Metropolitan Institute for Neuroscience.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Inoue, Ki., Ohmae, S. et al. New Cerebello-Cortical Pathway Involved in Higher-Order Oculomotor Control. Cerebellum 19, 401–408 (2020). https://doi.org/10.1007/s12311-020-01108-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-020-01108-8

Keywords

Navigation