Skip to main content

Advertisement

Log in

Status Epilepticus Increases Cell Proliferation and Neurogenesis in the Developing Rat Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Status epilepticus (SE) promotes neuronal proliferation and differentiation in the adult and developing rodent hippocampus. However, the effect of SE on other neurogenic brain regions such as the cerebellum has been less explored. To determine whether SE induced by pentylentetrazole (PTZ-SE) and lithium-pilocarpine (Li-Pilo-SE) increases cell proliferation and neurogenesis in the developing rat cerebellum. SE was induced in 14-day-old (P14) Wistar rat pups (both sexes). One hour after SE and the following day rats were injected intraperitoneally with 5-bromo-2′-deoxyuridine (BrdU, 50 mg/kg). Seven days after SE, immunohistochemistry was performed to detect BrdU-positive (BrdU+) cells or BrdU/NeuN+ cells in the cerebellar vermis. SE induced by PTZ or Li-Pilo statistically significant increased the number of cerebellar BrdU+ cells when compared with the control group (58% and 40%, respectively); maximal cell proliferation occurred in lobules II, III, VIb, VIc, VIII, IXa, and IXb of PTZ-SE group and II, V, VIc, VII, and X of Li-Pilo-SE group. An increased number of BrdU/NeuN+ cells was detected in lobules V (17 ± 1.9), VIc (25.8 ± 2.7), and VII (26.2 ± 3.4) after Li-Pilo-SE compared to their control group (9.8 ± 1.7, 12.8 ± 2.8, and 11 ± 1.7, respectively), while the number of BrdU/NeuN+ cells remained the same after PTZ-induced SE or control conditions. SE induced in the developing rat by different experimental models increases cell proliferation in the granular layer of the cerebellar vermis, but only SE of limbic seizures increases neurogenesis in specific cerebellar lobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mohapel P, Ekdahl CT, Lindvall O. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol Dis. 2004;15(2):196–205.

    PubMed  Google Scholar 

  2. Cherian A, Thomas SV. Status epilepticus. Ann Indian Acad Neurol. 2009;12(3):140–53. https://doi.org/10.4103/0972-2327.56312.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carreira BP, Santos DF, Santos AI, Carvalho CM, Araújo IM. Nitric oxide regulates neurogenesis in the hippocampus following seizures. Oxidative Med Cell Longev. 2015;451512. https://doi.org/10.1155/2015/451512.

    Google Scholar 

  4. Jiruska P, Shtaya AB, Bodansky DM, Chang WC, Gray WP, Jefferys JG. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Neurobiol Dis. 2013;54:492–8. https://doi.org/10.1016/j.nbd.2013.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Varodayan FP, Zhu XJ, Cui XN, Porter BE. Seizures increase cell proliferation in the dentate gyrus by shortening progenitor cell cycle length. Epilepsia. 2009;50(12):2638–47. https://doi.org/10.1111/j.1528-1167.2009.02244.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sankar R, Shin D, Liu H, Katsumori H, Wasterlain CG. Granule cell neurogenesis after status epilepticus in the immature rat brain. Epilepsia. 2000;41(Suppl 6):S53–6.

    PubMed  Google Scholar 

  7. Hung YW, Yang DI, Huang PY, Lee TS, Kuo TB, Yiu CH, et al. The duration of sustained convulsive seizures determines the pattern of hippocampal neurogenesis and the development of spontaneous epilepsy in rats. Epilepsy Res. 2012;98(2–3):206–15. https://doi.org/10.1016/j.eplepsyres.2011.09.015.

    Article  PubMed  Google Scholar 

  8. Yang F, Wang JC, Han JL, Zhao G, Jiang W. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus. 2008;18(5):460–8. https://doi.org/10.1002/hipo.20409.

    Article  PubMed  Google Scholar 

  9. Parent JM, Jessberger S, Gage FH, Gong C. Is neurogenesis reparative after status epilepticus? Epilepsia. 2007;48(s8):69–71.

    PubMed  Google Scholar 

  10. Bengzon J, Kokaia Z, Elmér E, Nanobashvili A, Kokaia M, Lindvall O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci U S A. 1997;94(19):10432–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78(3–5):272–303.

    PubMed  Google Scholar 

  12. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci. 1998;21(9):370–5.

    CAS  PubMed  Google Scholar 

  13. Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch Neurol. 1976;33(8):559–70.

    CAS  PubMed  Google Scholar 

  14. Cooper IS, Crighel E, Amin I. Clinical and physiological effects of stimulation of the paleocerebellum in humans. J Am Geriatr Soc. 1973;21(1):40–3.

    CAS  PubMed  Google Scholar 

  15. Davis R, Emmonds SE. Cerebellar stimulation for seizure control: 17-year study. Stereotact Funct Neurosurg. 1992;58(1–4):200–8.

    CAS  PubMed  Google Scholar 

  16. Gartside IB. The effects of cerebellectomy on a penicillin epileptogenic focus in the cerebral cortex of the rat. Electroencephalogr Clin Neurophysiol. 1978;44(3):373–9.

    CAS  PubMed  Google Scholar 

  17. Paz C, Ferna A. Amygdala kindling in totally cerebellectomized cats. Exp Neurol. 1985;88(2):418–24.

    CAS  PubMed  Google Scholar 

  18. Rubio C, Custodio V, González E, Retana-Márquez S, López M, Paz C. Effects of kainic acid lesions of the cerebellar interpositus and dentate nuclei on amygdaloid kindling in rats. Brain Res Bull. 2011;85(1–2):64–7. https://doi.org/10.1016/j.brainresbull.2011.02.003.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu JN, Wang JJ. The cerebellum in feeding control: possible function and mechanism. Cell Mol Neurobiol. 2008;28(4):469–78.

    PubMed  Google Scholar 

  20. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. III. Dating the time of production and onset of differentiation of cerebellar microneurons in rats. J Comp Neurol. 1969;136(3):269–93.

    CAS  PubMed  Google Scholar 

  21. Das GD, Nornes HO. Neurogenesis in the cerebellum of the rat: an autoradiographic study. Z Anat Entwicklungsgesch. 1972;138(2):155–65.

    CAS  PubMed  Google Scholar 

  22. Bandeira F, Lent R, Herculano-Houzel S. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci U S A. 2009;106(33):14108–13. https://doi.org/10.1073/pnas.0804650106.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lomoio S, Necchi D, Mares V, Scherini E. A single episode of neonatal seizures alters the cerebellum of immature rats. Epilepsy Res. 2011;93(1):17–24. https://doi.org/10.1016/j.eplepsyres.2010.10.013.

    Article  PubMed  Google Scholar 

  24. Boop S, Wheless J, Van Poppel K, Mc Gregor A, Boop FA. Cerebellar seizures. Report of 2 cases. J Neurosurg Pediatr. 2013;12(3):288–92. https://doi.org/10.3171/2013.5.PEDS1394.

    Article  PubMed  Google Scholar 

  25. Kros L, Eelkman Rooda OH, Spanke JK, Alva P, van Dongen MN, Karapatis A, et al. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol. 2015;77(6):1027–49. https://doi.org/10.1002/ana.24399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Velazco-Cercas E, Puig-Lagunes ÁA, Zamora-Bello I, Beltrán-Parrazal L, Morgado-Valle C, López-Meraz ML. Eneurobiología. 2017;8(17):220517.

    Google Scholar 

  27. Sankar R, Shin DH, Liu H, Mazarati A, Pereira de Vasconselos A, Wasterlain CG. Patterns of status epilepticus-induceed neuronal injury during development and longterm consequences. J Neurosci. 1998;18(20):8382–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lopez-Meraz ML, Niquet J, Wasterlain CG. Distinct caspase pathways mediate necrosis and apoptosis in subpopulations of hippocampal neurons after status epilepticus. Epilepsia. 2010;51(Suppl 3):56–60. https://doi.org/10.1111/j.1528-1167.2010.02611.x.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cameron HA, Mckay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435(4):406–17.

    CAS  PubMed  Google Scholar 

  30. Moshé SL, Albala BJ, Ackermann RF, Engel J. Increased seizure susceptibility of the immature brain. Brain Res. 1983;283:81–5.

    PubMed  Google Scholar 

  31. Shinnar S, Pellock JM, Moshé SL, Maytal J, O’Dell C, Driscoll SM, et al. In whom does status epilepticus occur: age-related differences in children. Epilepsia. 1997;38:907–14.

    CAS  PubMed  Google Scholar 

  32. Haut SR, Velísková J, Moshé SL. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 2004;3:608–17.

    PubMed  Google Scholar 

  33. DeLorenzo RJ, Hauser WA, Towne AR, Boggs JG, Pellock JM, Penberthy L, et al. A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia. Neurology. 1996;46:1029–35.

    CAS  PubMed  Google Scholar 

  34. DeLorenzo RJ, Pellock JM, Towne AR, Boggs JG. Epidemiology of status epilepticus. J Clin Neurophysiol. 1995;12:316–25.

    CAS  PubMed  Google Scholar 

  35. Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med. 1998;338:970–6.

    CAS  PubMed  Google Scholar 

  36. Pohl M, Mares P. Effects of flunarizine on metrazol-induced seizures in developing rats. Epilepsy Res. 1987;1(5):302–5.

    CAS  PubMed  Google Scholar 

  37. López-Meraz ML, Medel-Matus JS, Morgado-Valle C, Beltrán-Parrazal L, Pérez-Estudillo C, Manzo J. Effect of lithium-pilocarpine-induced status epilepticus on ultrasonic vocalizations in the infant rat pup. Epilepsy Behav. 2014;31:263–6. https://doi.org/10.1016/j.yebeh.2013.10.006.

    Article  PubMed  Google Scholar 

  38. Haas KZ, Sperber EF, Moshé SL. Kindling in developing animals: expression of severe seizures and enhanced development of bilateral foci. Brain Res Dev Brain Res. 1990;56(2):275–80.

    CAS  PubMed  Google Scholar 

  39. Suchomelova L, Lopez-Meraz ML, Niquet J, Kubova H, Wasterlain CG. Hyperthermia aggravates status epilepticus-induced epileptogenesis and neuronal loss in immature rats. Neuroscience. 2015;305:209–24. https://doi.org/10.1016/j.neuroscience.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  40. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. https://doi.org/10.1038/nmeth.2019.

    Article  CAS  PubMed  Google Scholar 

  41. Parent JM, Kron MM. Neurogenesis and epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, editors. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

  42. Carletti B, Rossi F. Neurogenesis in the cerebellum. Neuroscientist. 2008 Feb;14(1):91–100.

    PubMed  Google Scholar 

  43. Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci. 2015;8:450. https://doi.org/10.3389/fncel.2014.00450.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure and functions. Boca Raton: CRC Press; 1997.

    Google Scholar 

  45. Alder J, Cho NK, Hatten ME. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron. 1996;17(3):389–99.

    CAS  PubMed  Google Scholar 

  46. Hatten ME, Alder J, Zimmerman K, Heintz N. Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol. 1997;7(1):40–7.

    CAS  PubMed  Google Scholar 

  47. Farrell JS, Nguyen QA, Soltesz I. Resolving the micro-macro disconnect to address core features of seizure networks. Neuron. 2019;101(6):1016–28. https://doi.org/10.1016/j.neuron.2019.01.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hoffmann AF, Zhao Q, Holmes GL. Cognitive impairment following status epilepticus and recurrent seizures during early development: support for the “two-hit hypothesis”. Epilepsy Behav. 2004;5(6):873–7.

    PubMed  Google Scholar 

  49. Paulin MG. The role of the Cerebellum in motor control and perception. Brain Behav Evol. 1993;41(1):39–50.

    CAS  PubMed  Google Scholar 

  50. Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.

    PubMed  Google Scholar 

  51. Manzo J, Miquel M, Toledo R, Mayor-Mar JA, Garcia LI, Aranda-Abreu GE, et al. Fos expression at the cerebellum following non-contact arousal and mating behavior in male rats. Physiol Behav. 2008;93(1–2):357–63.

    CAS  PubMed  Google Scholar 

  52. Anderson CM, Maas LC, Deb Frederick B, Bendor JT, Spencer TJ, Livni E, et al. Cerebellar vermis involvement in cocaine-related behaviors. Neuropsychopharmacology. 2006;31(6):1318–26.

    CAS  PubMed  Google Scholar 

  53. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS, Lowenstein DH. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci. 1997;17(10):3727–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fujikawa DG. The temporal evolution of neuronal damage from pilocarpine-induced status epilepticus. Brain Res. 1996;725(1):11–22.

    CAS  PubMed  Google Scholar 

  55. Cerebellum VJ. In: Paxinos G, editor. The Rat Nervous System: Elsevier; 2004. p. 133–90.

  56. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. https://doi.org/10.1016/j.cortex.2009.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hagihara H, Hara M, Tsunekawa K, Nakagawa Y, Sawada M, Nakano K. Tonic–clonic seizures induce division of neuronal progenitor cells with concomitant changes in expression of neurotrophic factors in the brain of pilocarpine–treated mice. Brain Res Mol Brain Res. 2005;139(2):258–66.

    CAS  PubMed  Google Scholar 

  58. Cameron HA, Hazel TG, McKay RD. Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol. 1998;36(2):287–306.

    CAS  PubMed  Google Scholar 

  59. Danzer SC, He X, McNamara JO. Ontogeny of seizure-induced increases in BDNF immunoreactivity and TrkB receptor activation in rat hippocampus. Hippocampus. 2004;14(3):345–55.

    CAS  PubMed  Google Scholar 

  60. Zucchini S, Barbieri M, Simonato M. Alterations in seizure susceptibility and in seizure-induced plasticity after pharmacologic and genetic manipulation of the fibroblast growth factor-2 system. Epilepsia. 2005;46(Suppl 5):52–8.

    CAS  PubMed  Google Scholar 

  61. Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development. 1999;126(14):3089–100.

    PubMed  Google Scholar 

  62. Feng S, Ma S, Jia C, Su Y, Yang S, Zhou K, et al. Sonic hedgehog is a regulator of extracellular glutamate levels and epilepsy. EMBO Rep. 2016;17(5):682–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fernández C, Tatard VM, Bertrand N, Dahmane N. Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci. 2010;32(1):59–70.

    PubMed  PubMed Central  Google Scholar 

  64. Jiang G, Wang W, Cao Q, Gu J, Mi X, Wang K, et al. Insulin growth factor-1 (IGF-1) enhances hippocampal excitatory and seizure activity through IGF-1 receptor-mediated mechanisms in the epileptic brain. Clin Sci (Lond). 2015;129(12):1047–60. https://doi.org/10.1042/CS20150312.

    Article  CAS  Google Scholar 

  65. Banerjee SB, Rajendran R, Dias BG, Ladiwala U, Tole S, Vaidya VA. Recruitment of the Sonic hedgehog signaling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis. Eur J Neurosci. 2005;22(7):1570–80.

    PubMed  PubMed Central  Google Scholar 

  66. Koutsouraki ES, Anastasiades JJ, Baloyannis SJ. An immunohistochemical study of N-methyl-D-aspartate receptors in human cerebellum and hippocampus. American Journal of Medical Sciences and Medicine. 2013;1(2):28–30. https://doi.org/10.12691/ajmsm-1-2-3.

    Article  CAS  Google Scholar 

  67. Wasterlain CG, Naylor DE, Liu H, Niquet J, Baldwin R. Trafficking of NMDA receptors during status epilepticus: therapeutic implications. Epilepsia. 2013;54(Suppl 6):78–80. https://doi.org/10.1111/epi.12285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wasterlain CG, Liu H, Mazarati AM, Baldwin RA, Shirasaka Y, Katsumori H, et al. Self-sustaining status epilepticus: a condition maintained by potentiation of glutamate receptors and by plastic changes in substance P and other peptide neuromodulators. Epilepsia. 2000;41(Suppl. 6):S134–43.

    PubMed  Google Scholar 

  69. Yen W, Williamson J, Bertram EH, Kapur J. A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res. 2004;59:43–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol. 2001;11(3):327–35.

    CAS  PubMed  Google Scholar 

  71. Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca 2+−and stimulus duration–dependent switch for hippocampal gene expression. Cell. 1996;87(7):1203–14.

    CAS  PubMed  Google Scholar 

  72. Hirsch E, Baram TZ, Snead OC 3rd. Ontogenic study of lithium–pilocarpine-induced status epilepticus in rats. Brain Res. 1992;583(1–2):120–6.

    CAS  PubMed  Google Scholar 

  73. Ramanjaneyulu R, Ticku MK. Interactions of pentamethylenetetrazole and tetrazole analogues with the picrotoxinin site of the benzodiazepine- GABA receptorionophore complex. Eur J Pharmacol. 1984;98(3–4):337–45.

    CAS  PubMed  Google Scholar 

  74. Turski L, Ikonomidou C, Turski WA, Bortolotto ZA, Cavalheiro EA. Cholinergic mechanisms and epileptogenesis: the seizures induced by pilocarpine: a novel. Experimental model of intractable epilepsy. Synapse. 1989;3(2):154–71.

    CAS  PubMed  Google Scholar 

  75. Velísek L, Kubová H, Pohl M, Stanková L, Mares P, Schickerová R. Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Naunyn Schmiedeberg's Arch Pharmacol. 1992;346(5):588–91.

    Google Scholar 

  76. Velísek L. Models of Chemically- Induced Acute Seizures. In: Pitkanen A, Schwartzkroin PA, Moshe SL, editors. Models of seizures and epilepsy: Elsevier Academic Press; 2006. p. 127–52.

  77. Mareš P, Velišek L. N-methyl-D-aspartate (NMDA)-induced seizures in developing rats. Developmental brain research. Brain Res Dev Brain Res. 1992;65(2):185–9.

    PubMed  Google Scholar 

  78. Kubová H, Rejchrtová J, Redkozubova O, Mareš P. Outcome of status epilepticus in immature rats varies according to the paraldehyde treatment. Epilepsia. 2005;46(Suppl 5):38–42.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by CONACYT through the doctoral fellowship awarded to EVC (registration number 326059) and by Cuerpo Académico de Neurofisiología, Universidad Veracruzana (UV-CA-333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Leonor López-Meraz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velazco-Cercas, E., Beltran-Parrazal, L., Morgado-Valle, C. et al. Status Epilepticus Increases Cell Proliferation and Neurogenesis in the Developing Rat Cerebellum. Cerebellum 19, 48–57 (2020). https://doi.org/10.1007/s12311-019-01078-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01078-6

Keywords

Navigation