Skip to main content
Log in

Cognitive Functioning in Chiari Malformation Type I Without Posterior Fossa Surgery

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Chiari Malformation type I (CM-I) is a neurological disorder characterized by a displacement of the cerebellar tonsils through the foramen magnum into the spinal canal. Most research has focused on physical symptomatology but few studies include neuropsychological examinations. Moreover, although current research highlights the involvement of the cerebellum on higher cognitive functions, little is known about cognitive consequences associated with CM-I. The aim of this study is to analyze cognitive functioning between 39 CM-I patients and 39 healthy controls, matched by gender, age and years of education. Participants have been examined on a large battery of neuropsychological tests, including executive functioning, verbal fluency, spatial cognition, language, verbal memory, processing speed, facial recognition and theory of mind. Results show a poorer performance of the clinical group compared to the control group, even after controlling the effect of physical pain and anxious-depressive symptomatology. The findings suggest the presence of a generalized cognitive deficit associated with CM-I, which makes it necessary to focus attention not only on physical consequences, but also on cognitive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Manto M, Christian H. Chiari malformations. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders. Dordrecht: Springer; 2013. p. 1873–85. https://doi.org/10.1007/978-94-007-1333-8.

    Chapter  Google Scholar 

  2. Mariwalla NR, Boydston WR, Chern JJ. Newer subsets: Chiari 0 and Chiari 1.5 malformations. In: Tubbs RS, Oakes WJ, editors. The Chiari malformations. New York: Springer; 2013. p. 241–6. https://doi.org/10.1007/978-1-4614-6369-6_2.

    Chapter  Google Scholar 

  3. Tubbs RS, Oakes WJ. Introduction and classification of the Chiari malformations. In: Tubbs RS, Oakes WJ, editors. The Chiari malformations. New York: Springer; 2013. p. 1–3. https://doi.org/10.1007/978-1-4614-6369-6_2.

    Chapter  Google Scholar 

  4. Tubbs RS, Oakes WJ. The Chiari malformations: a historical context. In: Tubbs RS, Oakes WJ, editors. The Chiari malformations. New York: Springer; 2013. p. 5–11. https://doi.org/10.1007/978-1-4614-6369-6_2.

    Chapter  Google Scholar 

  5. Urbizu A, Toma C, Poca MA, Sahuquillo J, Cuenca-León E, Comand B, et al. Chiari malformation type I: a case-control association study of 58 developmental genes. PLoS One. 2013;8:e57241. https://doi.org/10.1371/journal.pone.0057241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Öktem H, Dilli A, Kürkçüoglu A, Soysal H, Yazici C, Pelin C. Prevalence of Chiari type I malformation on cervical magnetic resonance imaging: a retrospective study. J Exp Clin Anat. 2016;10:40–5. https://doi.org/10.2399/ana.15.039.

    Article  Google Scholar 

  7. Amado ME, Avellaneda A, Barrón J, Chesa E, De la Cruz J, Escribano M, et al. Malformaciones de la Unión Cráneo-Cervical (Chiari tipo I y Siringomielia). Documento de Consenso. Madrid: Editorial Médica A.W.W.W.E. S.A.; 2009.

  8. deSouza RM, Zador Z, Frim DM. Chiari malformation type I: related conditions. Neurol Res. 2011;33:278–84. https://doi.org/10.1179/016164111X12962202723922.

    Article  PubMed  Google Scholar 

  9. Meadows J, Guarnieri M, Miller K, Haroun R, Kraut M, Carson BS. Type I Chiari malformation: a review of the literature. Neurosurg Q. 2001;11(3):220–9.

    Article  Google Scholar 

  10. Chen J, Li Y, Wang T, Gao J, Xu J, Lai R, et al. Comparison of posterior fossa decompression with and without duraplasty for the surgical treatment of Chiari malformation type I in adult patients. Medicine. 2017;96:e5945. https://doi.org/10.1097/MD.0000000000005945.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443–54.

    Article  PubMed  CAS  Google Scholar 

  12. Bodranghien F, Bastian A, Casali C, Hallett M, Louis ED, Manto M, et al. Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum. 2016;15:369–91. https://doi.org/10.1007/s12311-015-0687-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77. https://doi.org/10.1007/s12311-013-0511-x.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9:22–8. https://doi.org/10.1007/s12311-009-0119-3.

    Article  PubMed  Google Scholar 

  15. Tirapu J, Luna P, Iglesias MD, Hernáez P. Contribución del cerebelo a los procesos cognitivos: avances actuales. Rev Neurol. 2011;53(5):301–15.

    Google Scholar 

  16. Voogd J. The human cerebellum. J Chem Neuroanat. 2003;26(4):243–52.

    Article  PubMed  Google Scholar 

  17. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11:352–65. https://doi.org/10.1007/s12311-011-0260-7.

    Article  PubMed  Google Scholar 

  18. Stoodley CJ, Valera EM, Schmahmann JD. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. NeuroImage. 2012;59:1560–70. https://doi.org/10.1016/j.neuroimage.2011.08.065.

    Article  PubMed  Google Scholar 

  19. Steinlin M, Wingeier K. Cerebellum and cognition. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F, editors. Handbook of the cerebellum and cerebellar disorders, vol. 2013. Dordrecht: Springer; 2013. p. 1687–99. https://doi.org/10.1007/978-94-007-1333-8.

    Chapter  Google Scholar 

  20. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;131(4):561–79.

    Article  Google Scholar 

  21. Leggio MG, Silveri MC, Petrosini L, Molinari M. Phonological grouping is specifically affected in cerebellar patients: a verbal fluency study. J Neurol Neurosurg Psychiatry. 2000;69(1):102–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gottwald B, Wilde B, Mihajlovic Z, Mehdorn HM. Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry. 2004;75:1524–31. https://doi.org/10.1136/jnnp.2003.018093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Molinari M, Leggio MG. Cerebellar information processing and visuospatial functions. Cerebellum. 2007;6:214–20. https://doi.org/10.1080/14734220701230870.

    Article  PubMed  Google Scholar 

  24. Leggio MG, Tedesco AM, Chiricozzi FR, Clausi S, Orsini A, Molinari M. Cognitive sequencing impairment in patients with focal or atrophic cerebellar damage. Brain. 2008;131:1332–43. https://doi.org/10.1093/brain/awn040.

    Article  PubMed  CAS  Google Scholar 

  25. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34. https://doi.org/10.1146/annurev.neuro.31.060407.125606.

    Article  PubMed  CAS  Google Scholar 

  26. Koziol LF, Barker LA. Hypotonia, jaundice, and Chiari malformations: relationships to executive functions. Appl Neuropsychol. 2013;2:141–9. https://doi.org/10.1080/21622965.2013.748390.

    Article  Google Scholar 

  27. D’Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circ. 2013; https://doi.org/10.3389/fncir.2012.00116.

  28. Mariën P, Ackermann H, Adamaszek M, Barwood CHS, Beaton A, Desmond J, et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014; https://doi.org/10.1007/s12311-013-0540-5.

  29. Nakamoto FK, Tsutsumiuchi M, Maeda MH, Uesaka Y, Takeda K. Memory impairment following right cerebelar infarction: a case study. Neurocase. 2015;21:660–4. https://doi.org/10.1080/13554794.2014.969277.

    Article  PubMed  Google Scholar 

  30. Van Overwalle F, Mariën P. Functional connectivity between the cerebrum and cerebellum in social cognition: a multi-study analysis. NeuroImage. 2016;124:248–55. https://doi.org/10.1016/j.neuroimage.2015.09.001.

    Article  PubMed  Google Scholar 

  31. Allen PA, Houston JR, Pollock JW, Buzzelli C, Li X, Harrington AK, et al. Task-specific and general cognitive effects in Chiari malformation type I. PLoS One. 2014;9(4):1–11. https://doi.org/10.1371/journal.pone.0094844.

  32. Kumar M, Rathore RK, Srivastava A, Yadav SK, Behari S, Gupta RK. Correlation of diffusion tensor imaging metrics with neurocognitive function in Chiari I malformation. World Neurosurg. 2011;76:189–94. https://doi.org/10.1016/j.wneu.2011.02.022.

    Article  PubMed  Google Scholar 

  33. Riva D, Usilla A, Saletti V, Esposito S, Bulgheroni S. Can Chiari malformation negatively affect higher mental functioning in developmental age? Neurol Sci. 2011;32:307–9. https://doi.org/10.1007/s10072-011-0779-x.

    Article  Google Scholar 

  34. Novegno F, Caldarelli M, Massa A, Chieffo D, Massimi L, Pettorini B, et al. The natural history of the Chiari type I anomaly. J Neurosurg Pediatr. 2008;2:179–87. https://doi.org/10.3171/PED/2008/2/9/179.

    Article  PubMed  Google Scholar 

  35. Lacy M, Ellefson SE, DeDios-Stern S, Frim DM. Parent-reported executive dysfunction in children and adolescents with Chiari malformation type 1. Pediatr Neurosurg. 2016;51:236–43. https://doi.org/10.1159/000445899.

    Article  PubMed  Google Scholar 

  36. Mestres O, Poca MA, Solana E, Radoi A, Quintana M, Force E, et al. Evaluación de la calidad de vida en los pacientes con una malformación de Chiari tipo I. Estudio piloto en una cohorte de 67 pacientes. Rev Neurol. 2012;55(3):148–56.

    PubMed  Google Scholar 

  37. Wilson BA, Alderman N, Burgess PW, Emslie H, Evans JJ. Behavioral assessment of the dysexecutive syndrome. England: Thames Valley Test Company; 1996.

    Google Scholar 

  38. Vargas ML, Sanz JC, Marín JJ. Behavioral assessment of the dysexecutive syndrome battery (BADS) in schizophrenia. A pilot study in the Spanish population. Cogn Behav Neurol. 2009;22(2):95–100.

    Article  PubMed  Google Scholar 

  39. Wechsler D. Wechsler adult intelligence scale, 4th ed. WAIS-IV. San Antonio: Pearson; 2008.

    Google Scholar 

  40. Wechsler D. WAIS-IV. Escala de inteligencia de Wechsler para adultos-IV. Madrid: NCS Pearson; 2012.

    Google Scholar 

  41. Golden CJ. Stroop color and word test. Chicago: Stoelting; 1978.

    Google Scholar 

  42. Golden CJ. Stroop Test de Colores y Palabras. Madrid: TEA Ediciones; 2010.

    Google Scholar 

  43. Benton AL, Hamsher K. Multilingual aplasia examination. Iowa City: Department of Neurology and Psychology, The University of Iowa; 1989.

    Google Scholar 

  44. Strauss E, Sherman EMS, Spreen O. A compendium of neuropsychological tests. New York: Oxford University Press; 2006.

    Google Scholar 

  45. Osterrieth PA. Le test de copie d’une figure complexe: Contribution à l’étude de la perception et la mémoire. Arch Psychol. 1944;30:286–356.

    Google Scholar 

  46. Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique. Arch Psychol. 1941;28:286–340.

    Google Scholar 

  47. Rey A. Test de Copia de una Figura Compleja. Madrid: TEA Ediciones; 1980.

    Google Scholar 

  48. Kaplan E, Goodglass H, Weintraub S. Boston naming test. Philadelphia: Lippincott Williams and Wilkins; 2001.

    Google Scholar 

  49. Kaplan E, Goodglass H, Weintraub S. Test de Denominación de Boston. Madrid: Panamericana; 2005.

    Google Scholar 

  50. Benedet MJ, Alejandre MA. TAVEC Test de Aprendizaje Verbal España-Complutense. Madrid: TEA Ediciones, S.A; 1998.

    Google Scholar 

  51. Smith A. Symbol digits modalities test. Western Psyhological Services: Los Angeles; 1982.

    Google Scholar 

  52. Smith A. Test de símbolos y dígitos. Madrid: TEA Ediciones; 2002.

    Google Scholar 

  53. Benton AL, Sivan AB, Hamsher KS, Varney NR, Spreen O. Contributions to neuropsychological assessment. New York: Oxford University Press; 1994.

    Google Scholar 

  54. Escanilla A. Datos normativos piloto de una población española de tres pruebas visuales de Benton: reconocimiento facial, orientación de líneas y discriminación de formas. Psychiatry and Legal Medicine Department. Autonomous University of Barcelona; 2000.

  55. Kessler H, Bayerl P, Deighton RM, Traue HC. Facially Expressed Emotion Labeling (FEEL): PC-gestützer Test zur Emotionserkennung. Verhaltenstherapie und Verhaltensmedizin. 2002;23(3):297–306.

    Google Scholar 

  56. Lázaro E, Amayra I, López-Paz JF, Martínez O, Pérez M, Berrocoso S, et al. Instrument for assessing the ability to identify emotional facial expressions in healthy children and in children with ADHD: the FEEL test. J Atten Disord. 2016; https://doi.org/10.1177/1087054716682335.

  57. Happé F. An advanced test of theory of mind: understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord. 1994;24:129–54.

    Article  PubMed  Google Scholar 

  58. Pousa E. Measurement of theory of mind in healthy adolescents: translation and cultural adaptation of F. Happé’s theory of mind stories (1999). Health Psychology and Social Psychology Department. Autonomous University of Barcelona; 2002.

  59. Zigmond A, Snaith R. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70.

    Article  PubMed  CAS  Google Scholar 

  60. López-Roig S, Terol M, Pastor M, Neipp M, Massutí B, Rodríguez-Marín J, et al. Ansiedad y Depresión. Validación de la escala HAD en pacientes oncológicos. J Health Psychol. 2002;12(2):127–55.

    Google Scholar 

  61. Downie WW, Leatham PA, Rhind VM, Wright V, Branco JA, Anderson JA. Studies with pain rating scales. Ann Rheum Dis. 1978;37(4):378–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Haelferi M, Elfering A. Pain assessment. Eur Spine J. 2006;15:S17–24. https://doi.org/10.1007/s00586-005-1044-x.

    Article  Google Scholar 

  63. Habas C, Kamdar N, Nguyen D, Prater K, Beckman CF, Menon V. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94. https://doi.org/10.1523/JNEUROSCI.1868-09.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Garrard P, Martin NH, Giunti P, Cipolotti L. Cognitive and social cognitive functioning in spinocerebellar ataxia. J Neurol. 2008;2008:398–405. https://doi.org/10.1007/s00415-008-0680-6.

    Article  Google Scholar 

  65. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54. https://doi.org/10.1056/NEJM198805263182102.

    Article  PubMed  CAS  Google Scholar 

  66. Ozguven HD, Oner O, Baskak B, Oktem F, Olmez S, Munir K. Theory of mind in schizophrenia and Asperger’s syndrome: relationship with negative symptoms. Klinik Psikofarmakol Bulteni. 2010;20(1):5–13.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tirapu J, Pérez G, Erekatxo M, Pelegrín C. Qué es la teoría de la mente? Rev Neurol. 2007;44(8):479–89.

    Google Scholar 

  68. Ferrucci R, Giannicola G, Rosa M, Fumagalli M, Boggio PS, Hallett M, et al. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness. Cognit Emot. 2012;26:786–99. https://doi.org/10.1080/02699931.2011.619520.

    Article  Google Scholar 

  69. D’Agata F, Caroppo P, Baudino B, Caglio M, Croce M, Berqui M, et al. The recognition of facial emotions in spinocerebellar Ataxia patients. Cerebellum. 2011;10:600–10. https://doi.org/10.1007/s12311-011-0276-z.

    Article  PubMed  CAS  Google Scholar 

  70. Eshetu T, Meoded A, Jallo GI, Carson BS, Huisman TA, Poretti A. Diffusion tensor imaging in pediatric Chiari type I malformation. Dev Med Child Neurol. 2014;56:742–8. https://doi.org/10.1111/dmcn.12494.

    Article  PubMed  Google Scholar 

  71. Snell RS. El cerebelo y sus conexiones. In: Snell RS, editor. Neuroanatomía clínica. Madrid: Editorial Médica Panamericana; 2007. p. 243–65.

    Google Scholar 

  72. Krishna V, Sammartino F, Yee P, Mikulis D, Walker M, Elias G, et al. Diffusion tensor imaging assessment of microstructural brainstem integrity in Chiari malformation type I. J Neurosurg. 2016;125:1112–9. https://doi.org/10.3171/2015.9.JNS151196.

    Article  PubMed  Google Scholar 

  73. Akar E, Kara S, Akdemir H, Kɪrɪş A. Fractal dimension analysis of cerebellum in Chiari malformation type I. Comput Biol Med. 2015; https://doi.org/10.1016/j.compbiomed.2015.06.024.

  74. Akar E, Kara S, Akdemir H, Kɪrɪş A. 3D structural complexity analysis of cerebellum in Chiari malformation type I. Med Biol Eng Comput. 2017;55:2169–82. https://doi.org/10.1007/s11517-017-1661-7.

    Article  PubMed  Google Scholar 

  75. Kraan C. Cerebellar cognitive affective syndrome. In: Rinehart N, Bradshaw J, Enticott P, editors. Developmental disorders of the brain. New York: Routledge; 2017. p. 25–43.

    Google Scholar 

  76. Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebelar cognitive profile. Brain. 2011;134:3672–86. https://doi.org/10.1093/brain/awr266.

    Article  PubMed  Google Scholar 

  77. Schmahmann JD. (1991). An emerging concept. The cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  PubMed  CAS  Google Scholar 

  78. Noroozian M. The role of the cerebellum in cognition: beyond coordination in the central nervous system. Neurol Clin. 2014;32:1081–104. https://doi.org/10.1016/j.ncl.2014.07.005.

    Article  PubMed  Google Scholar 

  79. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16:367–78. https://doi.org/10.1176/jnp.16.3.367.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank ANAC, ChySPA, and all of participants for their involvement in the study.

Funding

This study was funded by a grant of the Education Department of the Basque Government’s “Programa Predoctoral de Formación de Personal Investigador No Doctor” [PRE_2016_1_0099 to Maitane García].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitane García.

Ethics declarations

Conflict of Interest

The co-authors declare that they have no conflict of interest.

Ethical Approval and Informed Consent

The study was developed in accordance with ethical standards and with the 1964 Helsinki declaration and its later amendments. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, M., Lázaro, E., López-Paz, J.F. et al. Cognitive Functioning in Chiari Malformation Type I Without Posterior Fossa Surgery. Cerebellum 17, 564–574 (2018). https://doi.org/10.1007/s12311-018-0940-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-018-0940-7

Keywords

Navigation