Skip to main content

Advertisement

Log in

Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FASD:

Fetal alcohol spectrum disorder

FAS:

Fetal alcohol syndrome

EtOH:

Ethanol

PARP-1:

Poly (ADP-ribose) polymerase

FJB:

Fluoro-Jade-B

PAR:

Polymers of ADP-ribose

NAD+:

Nicotinamide adenine dinucleotide

NADP+:

Nicotinamide adenine dinucleotide phosphate

PD:

Postnatal days

References

  1. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, et al. Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev. 2009;15(3):176–92. https://doi.org/10.1002/ddrr.68.

    Article  PubMed  Google Scholar 

  2. Burd L, Klug MG, Martsolf JT, Kerbeshian J. Fetal alcohol syndrome: neuropsychiatric phenomics. Neurotoxicol Teratol. 2003;25(6):697–705. https://doi.org/10.1016/j.ntt.2003.07.014.

    Article  PubMed  CAS  Google Scholar 

  3. Bonthius DJ, West JR. Alcohol-induced neuronal loss in developing rats: increased brain damage with binge exposure. Alcohol Clin Exp Res. 1990;14(1):107–18. https://doi.org/10.1111/j.1530-0277.1990.tb00455.x.

    Article  PubMed  CAS  Google Scholar 

  4. Holmes GL. Morphological and physiological maturation of the brain in the neonate and young child. J Clin Neurophysiol. 1986;3(3):209–38. https://doi.org/10.1097/00004691-198607000-00002.

    Article  PubMed  CAS  Google Scholar 

  5. Ieraci A, Herrera DG. Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med. 2006;3(4):e101. https://doi.org/10.1371/journal.pmed.0030101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ieraci A, Herrera DG. Single alcohol exposure in early life damages hippocampal stem/progenitor cells and reduces adult neurogenesis. Neurobiol Dis. 2007;26(3):597–605. https://doi.org/10.1016/j.nbd.2007.02.011.

    Article  PubMed  CAS  Google Scholar 

  7. Ikonomidou C, Bittigau P, Ishimaru MJ, Wozniak DF, Koch C, Genz K, et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science. 2000;287(5455):1056–60. https://doi.org/10.1126/science.287.5455.1056.

    Article  PubMed  CAS  Google Scholar 

  8. Sowell ER, Jernigan TL, Mattson SN, Riley EP, Sobel DF, Jones KL. Abnormal development of the cerebellar vermis in children prenatally exposed to alcohol: size reduction in lobules I-V. Alcohol Clin Exp Res. 1996;20(1):31–4. https://doi.org/10.1111/j.1530-0277.1996.tb01039.x.

    Article  PubMed  CAS  Google Scholar 

  9. Lubetzky-Vilnai A, Jirikowic TL, McCoy SW. Investigation of the dynamic gait index in children: a pilot study. Pediatr Phys Ther. 2011;23(3):268–73. https://doi.org/10.1097/PEP.0b013e318227cd82.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jirikowic TL, McCoy SW, Lubetzky-Vilnai A, Price R, Ciol MA, Kartin D, et al. Sensory control of balance: a comparison of children with fetal alcohol spectrum disorders to children with typical development. J Popul Ther Clin Pharmacol. 2013;20(3):e212–28.

    PubMed  PubMed Central  Google Scholar 

  11. Light KE, Belcher SM, Pierce DR. Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience. 2002;114(2):327–37. https://doi.org/10.1016/S0306-4522(02)00344-5.

    Article  PubMed  CAS  Google Scholar 

  12. Siler-Marsiglio KI, Madorsky I, Pan Q, Paiva M, Neeley AW, Shaw G, et al. Effects of acute ethanol exposure on regulatory mechanisms of Bcl-2-associated apoptosis promoter, bad, in neonatal rat cerebellum: differential effects during vulnerable and resistant developmental periods. Alcohol Clin Exp Res. 2006;30(6):1031–8. https://doi.org/10.1111/j.1530-0277.2006.000126.x.

    Article  PubMed  CAS  Google Scholar 

  13. Siler-Marsiglio KI, Paiva M, Madorsky I, Pan Q, Shaw G, Heaton MB. Functional mechanisms of apoptosis-related proteins in neonatal rat cerebellum are differentially influenced by ethanol at postnatal days 4 and 7. J Neurosci Res. 2005;81(5):632–43. https://doi.org/10.1002/jnr.20591.

    Article  PubMed  CAS  Google Scholar 

  14. Bearer CF, Wellmann KA, Tang N, He M, Mooney SM. Choline ameliorates deficits in balance caused by acute neonatal ethanol exposure. Cerebellum. 2015;14(4):413–20. https://doi.org/10.1007/s12311-015-0691-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cebolla AM, Cheron G, Hourez R, Bearzatto B, Dan B, Servais L. Effects of maternal alcohol consumption during breastfeeding on motor and cerebellar Purkinje cells behavior in mice. Neurosci Lett. 2009;455(1):4–7. https://doi.org/10.1016/j.neulet.2009.03.034.

  16. Klintsova AY, Goodlett CR, Greenough WT. Therapeutic motor training ameliorates cerebellar effects of postnatal binge alcohol. Neurotoxicol Teratol. 2000;22(1):125–32. https://doi.org/10.1016/S0892-0362(99)00052-5.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng DT, Jacobson SW, Jacobson JL, Molteno CD, Stanton ME, Desmond JE. Eyeblink classical conditioning in alcoholism and fetal alcohol spectrum disorders. Front Psych. 2015;6:155. https://doi.org/10.3389/fpsyt.2015.00155.

    Article  Google Scholar 

  18. Idrus NM, McGough NNH, Spinetta MJ, Thomas JD, Riley EP. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats. Neurotoxicol Teratol. 2011;33(4):444–50. https://doi.org/10.1016/j.ntt.2011.04.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci. 2003;24(5):228–32. https://doi.org/10.1016/S0165-6147(03)00078-6.

    Article  PubMed  CAS  Google Scholar 

  20. Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington’s disease. Neurobiol Dis. 2011;41(1):43–50. https://doi.org/10.1016/j.nbd.2010.08.017.

    Article  PubMed  CAS  Google Scholar 

  21. Green KN, Steffan JS, Martinez-Coria H, Sun X, Schreiber SS, Thompson LM, et al. Nicotinamide restores cognition in Alzheimer’s disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau. J Neurosci. 2008;28(45):11500–10. https://doi.org/10.1523/JNEUROSCI.3203-08.2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang J, Klaidman LK, Chang ML, Kem S, Sugawara T, Chan P, et al. Nicotinamide therapy protects against both necrosis and apoptosis in a stroke model. Pharmacol Biochem Behav. 2002;73(4):901–10. https://doi.org/10.1016/S0091-3057(02)00939-5.

    Article  PubMed  CAS  Google Scholar 

  23. Maiese K, Chong ZZ, Hou J, Shang YC. The vitamin nicotinamide: translating nutrition into clinical care. Molecules. 2009;14(9):3446–85. https://doi.org/10.3390/molecules14093446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci. 2010;30(8):2967–78. https://doi.org/10.1523/JNEUROSCI.5552-09.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147(1):233–41. https://doi.org/10.1196/annals.1427.014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Diaz-Hernandez JI, Moncada S, Bolanos JP, Almeida A. Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress. Cell Death Differ. 2007;14(6):1211–21. https://doi.org/10.1038/sj.cdd.4402117.

    Article  PubMed  CAS  Google Scholar 

  27. Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171(8):2000–16. https://doi.org/10.1111/bph.12416.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kauppinen TM, Swanson RA. The role of poly(ADP-ribose) polymerase-1 in CNS disease. Neuroscience. 2007;145(4):1267–72. https://doi.org/10.1016/j.neuroscience.2006.09.034.

    Article  PubMed  CAS  Google Scholar 

  29. Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: “PAR-laying” NAD+ into a nuclear signal. Genes Dev. 2005;19(17):1951–67. https://doi.org/10.1101/gad.1331805.

    Article  PubMed  CAS  Google Scholar 

  30. Martire S, Mosca L, D’Erme M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev. 2015;146–148:53–64. https://doi.org/10.1016/j.mad.2015.04.001.

  31. Dikranian K, Qin YQ, Labruyere J, Nemmers B, Olney JW. Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Brain Res Dev Brain Res. 2005;155(1):1–13. https://doi.org/10.1016/j.devbrainres.2004.11.005.

    Article  PubMed  CAS  Google Scholar 

  32. Luo J. Mechanisms of ethanol-induced death of cerebellar granule cells. Cerebellum. 2012;11(1):145–54. https://doi.org/10.1007/s12311-010-0219-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Cimadamore F, Curchoe CL, Alderson N, Scott F, Salvesen G, Terskikh AV. Nicotinamide rescues human embryonic stem cell-derived neuroectoderm from parthanatic cell death. Stem Cells. 2009;27(8):1772–81. https://doi.org/10.1002/stem.107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, et al. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science. 2002;297(5579):259–63. https://doi.org/10.1126/science.1072221.

    Article  PubMed  CAS  Google Scholar 

  35. Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, et al. Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun. 2007;357(3):596–602. https://doi.org/10.1016/j.bbrc.2007.03.163.

    Article  PubMed  CAS  Google Scholar 

  36. Yokoyama H, Kuroiwa H, Tsukada T, Uchida H, Kato H, Araki T. Poly(ADP-ribose)polymerase inhibitor can attenuate the neuronal death after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. J Neurosci Res. 2010;88(7):1522–36. https://doi.org/10.1002/jnr.22310.

    Article  PubMed  CAS  Google Scholar 

  37. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28(1):115–30. https://doi.org/10.1146/annurev.nutr.28.061807.155443.

    Article  PubMed  CAS  Google Scholar 

  38. Goodlett CR, Horn KH, Zhou FC. Alcohol teratogenesis: mechanisms of damage and strategies for intervention. Exp Biol Med. 2005;230(6):394–406. https://doi.org/10.1177/15353702-0323006-07.

    Article  CAS  Google Scholar 

  39. Guerri C, Bazinet A, Riley EP. Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol. 2009;44(2):108–14. https://doi.org/10.1093/alcalc/agn105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Olney JW, Young C, Wozniak DF, Jevtovic-Todorovic V, Ikonomidou C. Do pediatric drugs cause developing neurons to commit suicide? Trends Pharmacol Sci. 2004;25(3):135–9. https://doi.org/10.1016/j.tips.2004.01.002.

    Article  PubMed  CAS  Google Scholar 

  41. Jevtovic-Todorovic V, Hartman RE, Izumi Y, Benshoff ND, Dikranian K, Zorumski CF, et al. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J Neurosci. 2003;23(3):876–82.

    Article  PubMed  CAS  Google Scholar 

  42. Olney JW. Focus on apoptosis to decipher how alcohol and many other drugs disrupt brain development. Front Pediatr. 2014;2:81. https://doi.org/10.3389/fped.2014.00081.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ullah N, Lee HY, Naseer MI, Ullah I, Suh JW, Kim MO. Nicotinamide inhibits alkylating agent-induced apoptotic neurodegeneration in the developing rat brain. PLoS One. 2011;6(12):e27093. https://doi.org/10.1371/journal.pone.0027093.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Hanners NW, Eitson JL, Usui N, Richardson RB, Wexler EM, Konopka G, et al. Western Zika virus in human fetal neural progenitors persists long term with partial cytopathic and limited immunogenic effects. Cell Rep. 2016;15(11):2315–22. https://doi.org/10.1016/j.celrep.2016.05.075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Yuan F, Chen X, Liu J, Feng W, Wu X, Chen S. Up-regulation of Siah1 by ethanol triggers apoptosis in neural crest cells through p38 MAPK-mediated activation of p53 signaling pathway. Arch Toxicol. 2017;91(2):775–84. https://doi.org/10.1007/s00204-016-1746-3.

    Article  PubMed  CAS  Google Scholar 

  46. Feng Y, Paul IA, LeBlanc MH. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res Bull. 2006;69(2):117–22. https://doi.org/10.1016/j.brainresbull.2005.11.011.

    Article  PubMed  CAS  Google Scholar 

  47. Ullah N, Ullah I, Lee HY, Naseer MI, Seok PM, Ahmed J, et al. Protective function of nicotinamide against ketamine-induced apoptotic neurodegeneration in the infant rat brain. J Mol Neurosci. 2012;47(1):67–75. https://doi.org/10.1007/s12031-011-9685-1.

    Article  PubMed  CAS  Google Scholar 

  48. Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, et al. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med. 2016;22(10):1101–7. https://doi.org/10.1038/nm.4184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Andrabi SA, Kang HC, Haince JF, Lee YI, Zhang J, Chi Z, et al. Iduna protects the brain from glutamate excitotoxicity and stroke by interfering with poly(ADP-ribose) polymer-induced cell death. Nat Med. 2011;17(6):692–9. https://doi.org/10.1038/nm.2387.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cherian PP, Schenker S, Henderson GI. Ethanol-mediated DNA damage and PARP-1 apoptotic responses in cultured fetal cortical neurons. Alcohol Clin Exp Res. 2008;32(11):1884–92. https://doi.org/10.1111/j.1530-0277.2008.00769.x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Young C, Roth KA, Klocke BJ, West T, Holtzman DM, Labruyere J, et al. Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol Dis. 2005;20(2):608–14. https://doi.org/10.1016/j.nbd.2005.04.014.

    Article  PubMed  CAS  Google Scholar 

  52. Mukherjee SK, Klaidman LK, Yasharel R, Adams JD. Increased brain NAD prevents neuronal apoptosis in vivo. Eur J Pharmacol. 1997;330(1):27–34. https://doi.org/10.1016/S0014-2999(97)00171-4.

    Article  PubMed  CAS  Google Scholar 

  53. Walsh SR, Hogg D, Mydlarski PR. Bullous pemphigoid: from bench to bedside. Drugs. 2005;65(7):905–26. https://doi.org/10.2165/00003495-200565070-00002.

    Article  PubMed  Google Scholar 

  54. Libri V, Yandim C, Athanasopoulos S, Loyse N, Natisvili T, Law PP, et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet. 2014;384(9942):504–13. https://doi.org/10.1016/S0140-6736(14)60382-2.

    Article  PubMed  CAS  Google Scholar 

  55. Olmos PR, Hodgson MI, Maiz A, Manrique M, De Valdes MD, Foncea R, et al. Nicotinamide protected first-phase insulin response (FPIR) and prevented clinical disease in first-degree relatives of type-1 diabetics. Diabetes Res Clin Pract. 2006;71(3):320–33. https://doi.org/10.1016/j.diabres.2005.07.009.

    Article  PubMed  CAS  Google Scholar 

  56. Chen AC, Martin AJ, Choy B, Fernandez-Penas P, Dalziell RA, McKenzie CA, et al. A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med. 2015;373(17):1618–26. https://doi.org/10.1056/NEJMoa1506197.

    Article  PubMed  CAS  Google Scholar 

  57. Crino A, Schiaffini R, Manfrini S, Mesturino C, Visalli N, Beretta Anguissola G, et al. A randomized trial of nicotinamide and vitamin E in children with recent onset type 1 diabetes (IMDIAB IX). Eur J Endocrinol. 2004;150(5):719–24. https://doi.org/10.1530/eje.0.1500719.

    Article  PubMed  CAS  Google Scholar 

  58. Knip M, Douek IF, Moore WP, Gillmor HA, McLean AE, Bingley PJ, et al. Safety of high-dose nicotinamide: a review. Diabetologia. 2000;43(11):1337–45. https://doi.org/10.1007/s001250051536.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

A.I. was supported by the De Witt-Reader’s Digest Fellowship, and D.G.H. was supported by grants from the National Alliance for Research on Schizophrenia and Depression and the Reader’s Digest Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Ieraci.

Ethics declarations

All animal procedures were approved by the Institutional Animal Care and Use Committees of Weill Cornell Medical College and were conducted in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ieraci, A., Herrera, D.G. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum. Cerebellum 17, 326–335 (2018). https://doi.org/10.1007/s12311-017-0916-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-017-0916-z

Keywords

Navigation