Skip to main content

Advertisement

Log in

Altered Bioenergetics in Primary Dermal Fibroblasts from Adult Carriers of the FMR1 Premutation Before the Onset of the Neurodegenerative Disease Fragile X-Associated Tremor/Ataxia Syndrome

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late onset neurodegenerative disorder, characterized by tremors, ataxia, impaired coordination, and cognitive decline. While all FXTAS individuals are carriers of a 55–200 CGG expansion at the 5′-UTR of the fragile X mental retardation gene (FMR1), also known as premutation, not all carriers develop FXTAS symptoms and some display other types of psychological/emotional disorders (e.g., autism, anxiety). The goal of this study was to investigate whether the mitochondrial dysfunction previously observed in fibroblasts from older premutation individuals (>60 years) was already present in younger (17–48 years), non-FXTAS-affected carriers and to identify the type and severity of the bioenergetic deficit. Since FXTAS affects mostly males, while females account for a small part of the FXTAS-affected population displaying less severe symptoms, only fibroblasts from males were evaluated in this study. Based on polarographic and enzymatic measurements, a generalized OXPHOS deficit was noted accompanied by increases in the matrix biomarker citrate synthase, oxidative stress (as increased mtDNA copy number and deletions), and mitochondrial network disruption/disorganization. Some of the outcomes (ATP-linked oxygen uptake, coupling, citrate synthase activity, and mitochondrial network organization) strongly correlated with the extent of the CGG expansion, with more severe deficits observed in cell lines carrying higher CGG number. Furthermore, mitochondrial outcomes can identify endophenotypes among carriers and are robust predictors of the premutation diagnosis before the onset of FXTAS, with the potential to be used as markers of prognosis and/or as readouts of pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suhl JA, Muddashetty RS, Anderson BR, Ifrim MF, Visootsak J, Bassell GJ, et al. A 3′ untranslated region variant in FMR1 eliminates neuronal activity-dependent translation of FMRP by disrupting binding of the RNA-binding protein HuR. Proc Natl Acad Sci U S A. 2015;112:E6553–61. doi:10.1073/pnas.1514260112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Todd PK, Oh SY, Krans A, He F, Sellier C, Frazer M, et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron. 2013;78:440–55. doi:10.1016/j.neuron.2013.03.026.

    Article  CAS  PubMed  Google Scholar 

  3. Jin P, Warren ST. Understanding the molecular basis of fragile X syndrome. Hum Mol Genet. 2000;9:901–8.

    Article  CAS  PubMed  Google Scholar 

  4. Hatton DD, Sideris J, Skinner M, Mankowski J, Bailey Jr DB, Roberts J, et al. Autistic behavior in children with fragile X syndrome: prevalence, stability, and the impact of FMRP. Am J Med Genet A. 2006;140A:1804–13. doi:10.1002/ajmg.a.31286.

    Article  PubMed  Google Scholar 

  5. Hagerman R, Hagerman P. Advances in clinical and molecular understanding of the FMR1 premutation and fragile X-associated tremor/ataxia syndrome. Lancet Neurol. 2013;12:786–98. doi:10.1016/S1474-4422(13)70125-X.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kogan CS, Turk J, Hagerman RJ, Cornish KM. Impact of the Fragile X mental retardation 1 (FMR1) gene premutation on neuropsychiatric functioning in adult males without fragile X-associated Tremor/Ataxia syndrome: a controlled study. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:859–72. doi:10.1002/ajmg.b.30685.

    Article  CAS  PubMed  Google Scholar 

  7. Tassone F, Iwahashi C, Hagerman PJ. FMR1 RNA within the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome (FXTAS). RNA Biol. 2004;1:103–5.

    Article  CAS  PubMed  Google Scholar 

  8. Napoli E, Ross-Inta C, Wong S, Omanska-Klusek A, Barrow C, Iwahashi C, et al. Altered zinc transport disrupts mitochondrial protein processing/import in fragile X-associated tremor/ataxia syndrome. Hum Mol Genet. 2011;20:3079–92. doi:10.1093/hmg/ddr211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Napoli E, Wong S, Hung C, Ross-Inta C, Bomdica P, Giulivi C. Defective mitochondrial disulfide relay system, altered mitochondrial morphology and function in Huntington’s disease. Hum Mol Genet. 2013;22:989–1004. doi:10.1093/hmg/dds503.

    Article  CAS  PubMed  Google Scholar 

  10. Banez-Coronel M, Porta S, Kagerbauer B, Mateu-Huertas E, Pantano L, Ferrer I, et al. A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet. 2012;8:e1002481. doi:10.1371/journal.pgen.1002481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pearson CE. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet. 2011;7:e1002018. doi:10.1371/journal.pgen.1002018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ross-Inta C, Omanska-Klusek A, Wong S, Barrow C, Garcia-Arocena D, Iwahashi C, et al. Evidence of mitochondrial dysfunction in fragile X-associated tremor/ataxia syndrome. Biochem J. 2010;429:545–52. doi:10.1042/BJ20091960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu J, Koscielska KA, Cao Z, Hulsizer S, Grace N, Mitchell G, et al. Signaling defects in iPSC-derived fragile X premutation neurons. Hum Mol Genet. 2012;21:3795–805. doi:10.1093/hmg/dds207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Napoli E, Ross-Inta C, Song G, Wong S, Hagerman R, Gane L, et al. Premutation in the fragile X mental retardation 1 (FMR1) gene affects maternal Zn-milk and perinatal brain bioenergetics and scaffolding. Front Neurosci. 2016. doi:10.3389/fnins.2016.00159.

    PubMed  PubMed Central  Google Scholar 

  15. Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, et al. Mitochondrial dysfunction in autism. JAMA. 2010;304:2389–96. doi:10.1001/jama.2010.1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Napoli E, Hung C, Wong S, Giulivi C. Toxicity of the flame-retardant BDE-49 on brain mitochondria and neuronal progenitor striatal cells enhanced by a PTEN-deficient background. Toxicol Sci. 2013;132:196–210. doi:10.1093/toxsci/kfs339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Napoli E, Ross-Inta C, Wong S, Hung C, Fujisawa Y, Sakaguchi D, et al. Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: interplay between Pten and p53. PLoS One. 2012;7:e42504. doi:10.1371/journal.pone.0042504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Napoli E, Wong S, Giulivi C. Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism. Mol Autism. 2013;4:2. doi:10.1186/2040-2392-4-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vowinckel J, Hartl J, Butler R, Ralser M. MitoLoc: a method for the simultaneous quantification of mitochondrial network morphology and membrane potential in single cells. Mitochondrion. 2015;24:77–86. doi:10.1016/j.mito.2015.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. II. Electron transport-linked ultrastructural transformations in mitochondria. J Cell Biol. 1968;37:345–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buffa P, Pasquali-Ronchetti I. Biochemical lesions of respiratory enzymes and configurational changes of mitochondria in vivo. II. Early ultrastructural modifications correlated to the biochemical lesion induced by fluoroacetate. Cell Tissue Res. 1977;183:1–23.

    Article  CAS  PubMed  Google Scholar 

  22. Cooper JM, Petty RK, Hayes DJ, Challiss RA, Brosnan MJ, Shoubridge EA, et al. An animal model of mitochondrial myopathy: a biochemical and physiological investigation of rats treated in vivo with the NADH-CoQ reductase inhibitor, diphenyleneiodonium. J Neurol Sci. 1988;83:335–47.

    Article  CAS  PubMed  Google Scholar 

  23. Chance B, Hollunger G. Inhibition of electron and energy transfer in mitochondria. IV. Inhibition of energy-linked diphosphopyridine nucleotide reduction by uncoupling agents. J Biol Chem. 1963;238:445–8.

    CAS  PubMed  Google Scholar 

  24. Chance B, Williams GR, Hollunger G. Inhibition of electron and energy transfer in mitochondria. III. Spectroscopic and respiratory effects of uncoupling agents. J Biol Chem. 1963;238:439–44.

    CAS  PubMed  Google Scholar 

  25. Okuda M, Lee HC, Kumar C, Chance B. Comparison of the effect of a mitochondrial uncoupler, 2,4-dinitrophenol and adrenaline on oxygen radical production in the isolated perfused rat liver. Acta Physiol Scand. 1992;145:159–68. doi:10.1111/j.1748-1716.1992.tb09351.x.

    Article  CAS  PubMed  Google Scholar 

  26. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD. Mitochondrial proton and electron leaks. Essays Biochem. 2010;47:53–67. doi:10.1042/bse0470053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fiskum G, Murphy AN, Beal MF. Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab. 1999;19:351–69. doi:10.1097/00004647-199904000-00001.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholls DG. Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol. 2002;34:1372–81.

    Article  CAS  PubMed  Google Scholar 

  29. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99. doi:10.1146/annurev.cellbio.22.010305.104638.

    Article  CAS  PubMed  Google Scholar 

  30. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50:98–115. doi:10.2144/000113610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leehey MA. Fragile X-associated tremor/ataxia syndrome: clinical phenotype, diagnosis, and treatment. J Investig Med. 2009;57:830–6. doi:10.231/JIM.0b013e3181af59c4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology. 2002;59:1406–11.

    Article  CAS  PubMed  Google Scholar 

  33. Miro O, Lopez S, Pedrol E, Rodriguez-Santiago B, Martinez E, Soler A, et al. Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy. Antivir Ther. 2003;8:333–8.

    CAS  PubMed  Google Scholar 

  34. Mancuso M, Filosto M, Bonilla E, Hirano M, Shanske S, Vu TH, et al. Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. Arch Neurol. 2003;60:1007–9. doi:10.1001/archneur.60.7.1007.

    Article  PubMed  Google Scholar 

  35. Yano S, Li L, Le TP, Moseley K, Guedalia A, Lee J, et al. Infantile mitochondrial DNA depletion syndrome associated with methylmalonic aciduria and 3-methylcrotonyl-CoA and propionyl-CoA carboxylase deficiencies in two unrelated patients: a new phenotype of mtDNA depletion syndrome. J Inherit Metab Dis. 2003;26:481–8.

    Article  CAS  PubMed  Google Scholar 

  36. Miro O, Lopez S, Cardellach F, Casademont J. Mitochondrial studies in HAART-related lipodystrophy: from experimental hypothesis to clinical findings. Antivir Ther. 2005;10 Suppl 2:M73–81.

    CAS  PubMed  Google Scholar 

  37. Muller-Hocker J, Muntau A, Schafer S, Jaksch M, Staudt F, Pongratz D, et al. Depletion of mitochondrial DNA in the liver of an infant with neonatal giant cell hepatitis. Hum Pathol. 2002;33:247–53.

    Article  PubMed  Google Scholar 

  38. Kang D, Hamasaki N. Alterations of mitochondrial DNA in common diseases and disease states: aging, neurodegeneration, heart failure, diabetes, and cancer. Curr Med Chem. 2005;12:429–41.

    Article  CAS  PubMed  Google Scholar 

  39. Liu CS, Tsai CS, Kuo CL, Chen HW, Lii CK, Ma YS, et al. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res. 2003;37:1307–17.

    Article  CAS  PubMed  Google Scholar 

  40. Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A. High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet. 2010;19:2695–705. doi:10.1093/hmg/ddq163.

    Article  CAS  PubMed  Google Scholar 

  41. Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet. 2010;19:R28–37. doi:10.1093/hmg/ddq143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127:397–408. doi:10.1016/j.cell.2006.09.024.

    Article  CAS  PubMed  Google Scholar 

  43. Pathak D, Berthet A, Nakamura K. Energy failure: does it contribute to neurodegeneration? Ann Neurol. 2013;74:506–16. doi:10.1002/ana.24014.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Napoli E, Wong S, Hertz-Picciotto I, Giulivi C. Deficits in bioenergetics and impaired immune response in granulocytes from children with autism. Pediatrics. 2014;133:e1405–10. doi:10.1542/peds.2013-1545.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther. 2012;342:619–30. doi:10.1124/jpet.112.192138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cloonan SM, Choi AM. Mitochondria: commanders of innate immunity and disease? Curr Opin Immunol. 2012;24:32–40. doi:10.1016/j.coi.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  47. Chen Y, Lu H, Liu Q, Huang G, Lim CP, Zhang L, et al. Function of GRIM-19, a mitochondrial respiratory chain complex I protein, in innate immunity. J Biol Chem. 2012;287:27227–35. doi:10.1074/jbc.M112.340315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Napoli E, Tassone F, Wong S, Angkustsiri K, Simon TJ, Song G, et al. Mitochondrial citrate transporter-dependent metabolic signature in the 22q11.2 deletion syndrome. J Biol Chem. 2015;290:23240–53. doi:10.1074/jbc.M115.672360.

    Article  CAS  PubMed  Google Scholar 

  49. Infantino V, Iacobazzi V, Menga A, Avantaggiati ML, Palmieri F. A key role of the mitochondrial citrate carrier (SLC25A1) in TNFalpha- and IFNgamma-triggered inflammation. Biochim Biophys Acta. 1839;2014:1217–25. doi:10.1016/j.bbagrm.2014.07.013.

    Google Scholar 

  50. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A. 1997;94:514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank the subjects that provided the samples making this study possible, Dr. Paul Hagerman and Ms. Glenda Espinal (Department of Biological Chemistry and Molecular Medicine, School of Medicine, University of California Davis) for providing the fibroblasts used in this study, and Dr. Flora Tassone (Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis) for assessing CGG repeat expansions in blood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Giulivi.

Ethics declarations

Funding

This study was funded by National Institutes for Health (ES12691, ES020392, HD036071, and HD040661) and Simons Foundation (no. 271406). Support was also obtained from the MIND Institute Intellectual and Developmental Disabilities Research Center (U54 HD079125).

Conflict of Interest

R.H. has received funding from Novartis, Roche/Genentech, Alcobra, and Neuren for treatment trials in fragile X syndrome, autism, and Down syndrome. She has also consulted with Novartis, Zynerba, and Roche/Genentech regarding treatment for fragile X syndrome. The other authors have no financial disclosures relevant to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(GIF 218 kb)

High resolution image (TIF 29596 kb)

Supplementary Table 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Napoli, E., Song, G., Wong, S. et al. Altered Bioenergetics in Primary Dermal Fibroblasts from Adult Carriers of the FMR1 Premutation Before the Onset of the Neurodegenerative Disease Fragile X-Associated Tremor/Ataxia Syndrome. Cerebellum 15, 552–564 (2016). https://doi.org/10.1007/s12311-016-0779-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0779-8

Keywords

Navigation