Skip to main content

Advertisement

Log in

Synaptic Multivesicular Release in the Cerebellar Cortex: Its Mechanism and Role in Neural Encoding and Processing

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The number of synaptic vesicles released during fast release plays a major role in determining the strength of postsynaptic response. However, it remains unresolved how the number of vesicles released in response to action potentials is controlled at a single synapse. Recent findings suggest that the Cav2.1 subtype (P/Q-type) of voltage-gated calcium channels is responsible for inducing presynaptic multivesicular release (MVR) at rat cerebellar glutamatergic synapses from granule cells to molecular layer interneurons. The topographical distance from Cav2.1 channels to exocytotic Ca2+ sensors is a critical determinant of MVR. In physiological trains of presynaptic neurons, MVR significantly impacts the excitability of postsynaptic neurons, not only by increasing peak amplitude but also by prolonging decay time of the postsynaptic currents. Therefore, MVR contributes additional complexity to neural encoding and processing in the cerebellar cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59:861–72.

    Article  CAS  PubMed  Google Scholar 

  2. Fioravante D, Regehr WG. Short-term forms of presynaptic plasticity. Curr Opin Neurobiol. 2011;21:269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bao J, Reim K, Sakaba T. Target-dependent feedforward inhibition mediated by short-term synaptic plasticity in the cerebellum. J Neurosci. 2010;30:8171–9.

    Article  CAS  PubMed  Google Scholar 

  4. Satake S, Inoue T, Imoto K. Paired-pulse facilitation of multivesicular release and intersynaptic spillover of glutamate at rat cerebellar granule cell-interneurone synapses. J Physiol. 2012;590:5653–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hámori J. Synaptic input to the axon hillock and initial segment of inhibitory interneurons in the cerebellar cortex of the rat. An electron microscopic study. Cell Tissue Res. 1981;217:553–62.

    Article  PubMed  Google Scholar 

  6. Castejón OJ, Castejón HV, Sims P. Light microscopy, confocal laser scanning microscopy, scanning and transmission electron microscopy of cerebellar basket cells. J Submicrosc Cytol Pathol. 2001;33:23–32.

    PubMed  Google Scholar 

  7. Catterall WA, Leal K, Nanou E. Calcium channels and short-term synaptic plasticity. J Biol Chem. 2013;288:10742–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Osanai M, Saegusa H, Kazuno A, Nagayama S, Hu Q, Zong S, et al. Altered cerebellar function in mice lacking Cav2.3 Ca2+ channel. Biochem Biophys Res Commun. 2006;344:920–5.

    Article  CAS  PubMed  Google Scholar 

  9. Myoga MH, Regehr WG. Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to Purkinje cell synapses. J Neurosci. 2011;31:5235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu LG, Westenbroek RE, Borst JGG, Catterall WA, Sakmann B. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single Calyx-type synapses. J Neurosci. 1999;19:726–36.

    CAS  PubMed  Google Scholar 

  11. Augustine GJ. How does calcium trigger neurotransmitter release? Curr Opin Neurobiol. 2001;11:320–6.

    Article  CAS  PubMed  Google Scholar 

  12. Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol. 1998;512:723–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Borst JGG, Sakmann B. Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol. 1998;513:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rozov A, Burnashev N, Sakmann B, Neher E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell specific difference in presynaptic calcium dynamics. J Physiol. 2001;531:807–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Felmy F, Neher E, Schneggenburger R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron. 2003;37:801–11.

    Article  CAS  PubMed  Google Scholar 

  16. Vyleta NP, Jonas P. Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse. Science. 2014;343:665–70.

    Article  CAS  PubMed  Google Scholar 

  17. Bornschein G, Arendt O, Hallermann S, Brachtendorf S, Eilers J, Schmidt H. Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J Physiol. 2013;591:3355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Satake S, Imoto K. Cav2.1 channels control multivesicular release by relying on their distance from exocytotic Ca2+ sensors at rat cerebellar granule cells. J Neurosci. 2014;34:1462–74.

    Article  CAS  PubMed  Google Scholar 

  19. Atluri PP, Regehr WG. Delayed release of neurotransmitter from cerebellar granule cells. J Neurosci. 1998;18:8214–27.

    CAS  PubMed  Google Scholar 

  20. Chen C, Regehr WG. Contributions of residual calcium to fast synaptic transmission. J Neurosci. 1999;19:6257–66.

    CAS  PubMed  Google Scholar 

  21. Wadiche JI, Jahr CE. Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron. 2001;32:301–13.

    Article  CAS  PubMed  Google Scholar 

  22. Satake S, Song SY, Cao Q, Satoh H, Rusakov DA, Yanagawa Y, et al. Characterization of AMPA receptors targeted by the climbing fiber transmitter mediating presynaptic inhibition of GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurosci. 2006;26:2278–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Rev. 2004;45:250–65.

    Article  CAS  PubMed  Google Scholar 

  24. Satake S, Song SY, Konishi S, Imoto K. Glutamate transporter EAAT4 in Purkinje cells controls intersynaptic diffusion of climbing fiber transmitter mediating inhibition of GABA release from interneurons. Eur J Neurosci. 2010;32:1843–53.

    Article  PubMed  Google Scholar 

  25. Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC. The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci. 1998;18:3606–19.

    CAS  PubMed  Google Scholar 

  26. Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65:1–105.

    Article  CAS  PubMed  Google Scholar 

  27. Bollmann JH, Sakmann B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci. 2005;8:426–34.

    CAS  PubMed  Google Scholar 

  28. Sheng J, He L, Zheng H, Xue L, Luo F, Shin W, et al. Calcium-channel number critically influences synaptic strength and plasticity at the active zone. Nat Neurosci. 2012;15:998–1006.

    Article  CAS  PubMed  Google Scholar 

  29. Inchauspe CG, Martini FJ, Forsythe ID, Uchitel OD. Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of Held presynaptic terminal. J Neurosci. 2004;24:10379–83.

    Article  CAS  PubMed  Google Scholar 

  30. Ishikawa T, Kaneko M, Shin HS, Takahashi T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J Physiol. 2005;568:199–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsui K, Jahr CE. Ectopic release of synaptic vesicles. Neuron. 2003;40:1173–83.

    Article  CAS  PubMed  Google Scholar 

  32. Balakrishnan S, Dobson KL, Jackson C, Bellamy TC. Ectopic release of glutamate contributes to spillover at parallel fibre synapses in the cerebellum. J Physiol. 2014;592:1493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matsui K, Jahr CE. Differential control of synaptic and ectopic vesicular release of glutamate. J Neurosci. 2004;24:8932–9.

    Article  CAS  PubMed  Google Scholar 

  34. Mintz IM, Sabatini BL, Regehr WG. Calcium control of transmitter release at a cerebellar synapse. Neuron. 1995;15:675–88.

    Article  CAS  PubMed  Google Scholar 

  35. Randall A, Tsien RW. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci. 1995;15:2995–3012.

    CAS  PubMed  Google Scholar 

  36. Indriati DW, Kamasawa N, Matsui K, Meredith AL, Watanabe M, Shigemoto R. Quantitative localization of Cav2.1 (P/Q-type) voltage-dependent calcium channels in Purkinje cells: somatodendritic gradient and distinct somatic coclustering with calcium-activated potassium channels. J Neurosci. 2013;33:3668–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wadel K, Neher E, Sakaba T. The coupling between synaptic vesicles and Ca2+ channels determines fast neurotransmitter release. Neuron. 2007;53:563–75.

    Article  CAS  PubMed  Google Scholar 

  38. Bucurenciu I, Kulik Á, Schwaller B, Frotscher M, Jonas P. Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse. Neuron. 2008;57:536–45.

    Article  CAS  PubMed  Google Scholar 

  39. Eggermann E, Jonas P. How the ‘slow’ Ca2+ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes. Nat Neurosci. 2012;15:20–2.

    Article  CAS  Google Scholar 

  40. Schneggenburger R, Han Y, Kochubey O. Ca2+ channels and transmitter release at the active zone. Cell Calcium. 2012;52:199–207.

    Article  CAS  PubMed  Google Scholar 

  41. Nadkarni S, Bartol TM, Stevens CF, Sejnowski TJ, Levine H. Short-term plasticity constrains spatial organization of a hippocampal presynaptic terminal. Proc Natl Acad Sci U S A. 2012;109:14657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oheim M, Kirchhoff F, Stühmer W. Calcium microdomains in regulated exocytosis. Cell Calcium. 2006;40:423–39.

    Article  CAS  PubMed  Google Scholar 

  43. Chamberland S, Evstratova A, Tóth K. Interplay between synchronization of multivesicular release and recruitment of additional release sites support short-term facilitation at hippocampal mossy fiber to CA3 pyramidal cells synapses. J Neurosci. 2014;34:11032–47.

    Article  PubMed  Google Scholar 

  44. Blatow M, Caputi A, Burnashev N, Monyer H, Rozov A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron. 2003;38:79–88.

    Article  CAS  PubMed  Google Scholar 

  45. Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2003;2:242–62.

    Article  CAS  PubMed  Google Scholar 

  46. Ermolyuk YS, Alder FG, Surges R, Pavlov IY, Timofeeva Y, Kullmann DM, et al. Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat Neurosci. 2013;16:1754–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crowley JJ, Carter AG, Regehr WG. Fast vesicle replenishment and rapid recovery from desensitization at a single synaptic release site. J Neurosci. 2007;27:5448–60.

    Article  CAS  PubMed  Google Scholar 

  48. Abrahamsson T, Cathala L, Matsui K, Shigemoto R, DiGregorio DA. Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron. 2012;73:1159–72.

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Liu SJ. Activation of extrasynaptic NMDA receptors induces a PKC-dependent switch in AMPA receptor subtypes in mouse cerebellar stellate cells. J Physiol. 2007;583:537–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nahir B, Jahr CE. Activation of extrasynaptic NMDARs at individual parallel fiber-molecular layer interneuron synapses in cerebellum. J Neurosci. 2013;33:16323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beierlein M, Regehr WG. Local interneurons regulate synaptic strength by retrograde release of endocannabinoids. J Neurosci. 2006;26:9935–43.

    Article  CAS  PubMed  Google Scholar 

  52. Bender VA, Pugh JR, Jahr CE. Presynaptically expressed long-term potentiation increases multivesicular release at parallel fiber synapses. J Neurosci. 2009;29:10974–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lonart G, Schoch S, Kaeser PS, Larkin CJ, Südhof TC, Linden DJ. Phosphorylation of RIM1α by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Neuron. 2003;115:49–60.

    CAS  Google Scholar 

  54. Chadderton P, Margrie TW, Häusser M. Integration of quanta in cerebellar granule cells during sensory processing. Nature. 2004;428:856–60.

    Article  CAS  PubMed  Google Scholar 

  55. van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI. High frequency burst firing of granule cells ensures transmission at the parallel fiber to Purkinje cell synapse at the cost of temporal coding. Front Neural Circuits. 2013;7:95.

    PubMed  PubMed Central  Google Scholar 

  56. Blot A, Barbour B. Ultra-rapid axon-axon ephaptic inhibition of cerebellar Purkinje cells by the pinceau. Nat Neurosci. 2014;17:289–95.

    Article  CAS  PubMed  Google Scholar 

  57. Santamaria F, Tripp PG, Bower JM. Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol. 2007;97:248–63.

    Article  PubMed  Google Scholar 

  58. Konishi S, Satake S. Physiological interactions between neurons and glia: roles of transporters in the control of intersynaptic crosstalk. In: Kaur C, Ling EA, editors. Glial Cells: Embryonic Development, Types/Functions and Role in Disease. New York: Nova Science Publishers; 2013. p. 177–92.

    Google Scholar 

  59. Auger C, Kondo S, Marty A. Multivesicular release at single functional synaptic sites in cerebellar stellate and basket cells. J Neurosci. 1998;18:4532–47.

    CAS  PubMed  Google Scholar 

  60. Foster KA, Regehr WG. Variance-mean analysis in the presence of a rapid antagonist indicates vesicle depletion underlies depression at the climbing fiber synapse. Neuron. 2004;43:119–31.

    Article  CAS  PubMed  Google Scholar 

  61. Foster KA, Clowley JJ, Regehr WG. The influence of multivesicular release and postsynaptic receptor saturation on transmission at granule cell to Purkinje cell synapses. J Neurosci. 2005;25:11655–65.

    Article  CAS  PubMed  Google Scholar 

  62. Pulido C, Trigo FF, Llano I, Marty A. Vesicular release statistics and unitary postsynaptic current at single GABAergic synapses. Neuron. 2015;85:159–72.

    Article  CAS  PubMed  Google Scholar 

  63. Rudolph S, Overstreet-Wadiche L, Wadiche JI. Desynchronization of multivesicular release enhances Purkinje cell output. Neuron. 2011;70:991–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sugihara I, Shinoda Y. Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. J Neurosci. 2004;24:8771–85.

    Article  CAS  PubMed  Google Scholar 

  65. Cerminara NL, Lang EC, Sillitoe RV, Apps R. Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci. 2015;16:79–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paukert M, Huang YH, Tanaka K, Rothstein JD, Bergles DE. Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J Neurosci. 2010;26:7290–9.

    Article  Google Scholar 

  67. Sugihara I, Fujita H, Na J, Quy PN, Li BY, Ikeda D. Projection of reconstructed single Purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum. J Comp Neurol. 2009;512:282–304.

    Article  CAS  PubMed  Google Scholar 

  68. Christie JM, Jahr CE. Multivesicular release at schaffer collateral-CA1 hippocampal synapses. J Neurosci. 2006;26:210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Biró ÁA, Holderith NB, Nusser Z. Release probability-dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J Neurosci. 2006;26:12487–96.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and the Japan Society for the Promotion of Science.

Conflict of Interest

We declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin’Ichiro Satake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satake, S., Inoue, T. & Imoto, K. Synaptic Multivesicular Release in the Cerebellar Cortex: Its Mechanism and Role in Neural Encoding and Processing. Cerebellum 15, 201–207 (2016). https://doi.org/10.1007/s12311-015-0677-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-015-0677-5

Keywords

Navigation