Skip to main content

Advertisement

Log in

Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations

  • Original Article
  • Published:
Cancer Microenvironment

Abstract

We developed a scripted algorithm, based on previous, earlier editions of the algorithm, to mine prostate cancer exome files for T-cell receptor (TcR) recombination reads: Reads representing TcR gene recombinations were identified in 497 prostate cancer exome files from the cancer genome atlas (TCGA). As has been reported for melanoma, co-detection of productive TcR-α and TcR-β recombination reads correlated with an RNA expression signature representing T-cell exhaustion, particularly with high RNA levels for PD-1 and PD-L1, in comparison to several different control sets of samples. Co-detection of TcR-α and TcR-β recombination reads also correlated with high level expression of genes representing antigen presenting functions, further supporting the conclusion that co-detection of TcR-α and TcR-β recombination reads represents an immunologically relevant microenvironment. Finally, detection of unproductive TcR-δ recombinations, and unproductive and productive TcR-γ recombinations, strongly correlated with, and may represent a convenient biomarker for a poor clinical outcome. These results underscore the value of the genomics-based assessment of unproductive TcR recombinations and raise questions about the impact of tumor microenvironment lymphocytes in the absence of antigenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from Germline Biallelic mismatch repair deficiency J Clin Oncol: Off J Am Soc Clin Oncol. https://doi.org/10.1200/JCO.2016.66.6552

  2. Li SK, Martin A (2016) Mismatch repair and colon cancer: mechanisms and therapies explored. Trends Mol Med 22(4):274–289. https://doi.org/10.1016/j.molmed.2016.02.003

    Article  PubMed  CAS  Google Scholar 

  3. Westdorp H, Fennemann FL, Weren RD, Bisseling TM, Ligtenberg MJ, Figdor CG et al (2016) Opportunities for immunotherapy in microsatellite instable colorectal cancer. Cancer Immunol Immunother: CII 65(10):1249–1259. https://doi.org/10.1007/s00262-016-1832-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, Hollmann TJ, Bruggeman C, Kannan K, Li Y, Elipenahli C, Liu C, Harbison CT, Wang L, Ribas A, Wolchok JD, Chan TA (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199. https://doi.org/10.1056/NEJMoa1406498.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Samy MD, Tong WL, Yavorski JM, Sexton WJ, Blanck G (2017) T cell receptor gene recombinations in human tumor specimen exome files: detection of T cell receptor-beta VDJ recombinations associates with a favorable oncologic outcome for bladder cancer. Cancer Immunol Immunother: CII 66(3):403–410. https://doi.org/10.1007/s00262-016-1943-1.

    Article  PubMed  CAS  Google Scholar 

  6. Tu YN, Tong WL, Samy MD, Yavorski JM, Kim M, Blanck G (2017) Assessing microenvironment immunogenicity using tumor specimen exomes: co-detection of TcR-alpha/beta V(D)J recombinations correlates with PD-1 expression. Int J Cancer 140(11):2568–2576. https://doi.org/10.1002/ijc.30675

    Article  PubMed  CAS  Google Scholar 

  7. Gill TR, Samy MD, Butler SN, Mauro JA, Sexton WJ, Blanck G (2016) Detection of productively rearranged TcR-alpha V-J sequences in TCGA exome files: implications for tumor Immunoscoring and recovery of antitumor T-cells. Cancer Inform 15:23–28. https://doi.org/10.4137/CIN.S35784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Malaspinas AS, Tange O, Moreno-Mayar JV, Rasmussen M, DeGiorgio M, Wang Y, Valdiosera CE, Politis G, Willerslev E, Nielsen R (2014) Bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). Bioinformatics 30(20):2962–2964. https://doi.org/10.1093/bioinformatics/btu410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1. https://doi.org/10.1126/scisignal.2004088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404. https://doi.org/10.1158/2159-8290.CD-12-0095.

    Article  PubMed  Google Scholar 

  11. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12(1):323. https://doi.org/10.1186/1471-2105-12-323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guo Y, Sheng Q, Li J, Ye F, Samuels DC, Shyr Y (2013) Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS One 8(8):e71462. https://doi.org/10.1371/journal.pone.0071462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Padovan E, Casorati G, Dellabona P, Meyer S, Brockhaus M, Lanzavecchia A (1993) Expression of two T cell receptor alpha chains: dual receptor T cells. Science 262(5132):422–424. https://doi.org/10.1126/science.8211163

    Article  PubMed  CAS  Google Scholar 

  14. Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R (2005) Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res 25(6C):4435–4438

    PubMed  Google Scholar 

  15. Vesalainen S, Lipponen P, Talja M, Syrjanen K (1994) Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer 30A(12):1797–1803

    Article  PubMed  CAS  Google Scholar 

  16. Gao J, Ward JF, Pettaway CA, Shi LZ, Subudhi SK, Vence LM, Zhao H, Chen J, Chen H, Efstathiou E, Troncoso P, Allison JP, Logothetis CJ, Wistuba II, Sepulveda MA, Sun J, Wargo J, Blando J, Sharma P VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017;23(5):551–5. https://doi.org/10.1038/nm.4308, 555.

  17. Tong WL, Tu YN, Samy MD, Sexton WJ, Blanck G (2017) Identification of immunoglobulin V(D)J recombinations in solid tumor specimen exome files: evidence for high level B-cell infiltrates in breast cancer. Hum Vaccin Immunother 13(3):1–6. https://doi.org/10.1080/21645515.2016.1246095

    Article  Google Scholar 

  18. Butler SN, Blanck G (2016) Immunoscoring by correlating MHC class II and TCR expression: high level immune functions represented by the KIRP dataset of TCGA. Cell Tissue Res 363(2):491–496. https://doi.org/10.1007/s00441-015-2261-1

    Article  PubMed  CAS  Google Scholar 

  19. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF (2007) Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27(2):334–348. https://doi.org/10.1016/j.immuni.2007.05.020

    Article  PubMed  CAS  Google Scholar 

  20. Fournie JJ, Sicard H, Poupot M, Bezombes C, Blanc A, Romagne F et al (2013) What lessons can be learned from gammadelta T cell-based cancer immunotherapy trials? Cell Mol Immunol 10(1):35–41. https://doi.org/10.1038/cmi.2012.39

    Article  PubMed  CAS  Google Scholar 

  21. Azuara V, Levraud JP, Lembezat MP, Pereira P (1997) A novel subset of adult gamma delta thymocytes that secretes a distinct pattern of cytokines and expresses a very restricted T cell receptor repertoire. Eur J Immunol 27(2):544–553. https://doi.org/10.1002/eji.1830270228

    Article  PubMed  CAS  Google Scholar 

  22. Wen L, Barber DF, Pao W, Wong FS, Owen MJ, Hayday A (1998) Primary gamma delta cell clones can be defined phenotypically and functionally as Th1/Th2 cells and illustrate the association of CD4 with Th2 differentiation. J Immunol 160(4):1965–1974

    PubMed  CAS  Google Scholar 

  23. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 373(6511):255–257. https://doi.org/10.1038/373255a0

    Article  PubMed  CAS  Google Scholar 

  24. Matsue H, Cruz PD Jr, Bergstresser PR, Takashima A (1993) Profiles of cytokine mRNA expressed by dendritic epidermal T cells in mice. J Invest Dermatol 101(4):537–542. https://doi.org/10.1111/1523-1747.ep12365917

    Article  PubMed  CAS  Google Scholar 

  25. Seo N, Tokura Y, Takigawa M, Egawa K (1999) Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol 163(1):242–249

    PubMed  CAS  Google Scholar 

  26. Ke Y, Kapp LM, Kapp JA (2003) Inhibition of tumor rejection by gammadelta T cells and IL-10. Cell Immunol 221(2):107–114. https://doi.org/10.1016/S0008-8749(03)00066-2

    Article  PubMed  CAS  Google Scholar 

  27. Kazemfar K, Chen R, Nicholson K, Coppola D, Zhou JM, Chen X, Wei S, Blanck G (2009) Combined IL-8 and TGF-beta blockade efficiently prevents neutrophil infiltrates into an A549-cell tumor. Immunol Lett 122(1):26–29. https://doi.org/10.1016/j.imlet.2008.10.010

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank USF research computing and the taxpayers of the State of Florida. This article is dedicated to William.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Blanck.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 3511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tu, Y.N., Tong, W.L., Yavorski, J.M. et al. Immunogenomics: A Negative Prostate Cancer Outcome Associated with TcR-γ/δ Recombinations. Cancer Microenvironment 11, 41–49 (2018). https://doi.org/10.1007/s12307-018-0204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-018-0204-6

Keywords

Navigation