Skip to main content
Log in

Genesis of the Heneshk IOCG deposit, Iran: magnetite mineral chemistry and sulfur isotope

  • Article
  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

The Heneshk Fe ± Cu deposit, a metamorphosed IOCG (Iron Oxide Copper Gold) is situated in Sanandaj-Sirjan Zone, SW Iran. Mineralization occurs as two stratabound ‘U’ shape ore bodies, hosted by a meta-dolomite member of a metamorphic complex. The ore and gangue minerals comprise magnetite, chalcopyrite, hematite, martite, mushketovite, pyrite, barite, calcite, dolomite, and quartz. The successive mineral assemblage formed in the five paragenetic stages (I to V) during an ongoing deformation regime from the plastic to the brittle deformation regime. The mineralization stages comprise stage I, III, and IV. Stage I–III and IV formed in the plastic and the brittle deformation regime by the metamorphic processes in a shear zone, respectively. The concomitant alteration products of these stages comprise sodic, Fe, K, hydrolytic and silicification. The sodic and Fe alterations occur as a pre-mineralization stage and each mineralization stage is accompanied by K and hydrolytic alterations. A late barite-calcite-quartz assemblage (stage V) overprinted on the previous stages (I to IV). Stage I mineralization formed at a depth of ~10 km and temperature of ~300 °C (a high pressure-low temperature environment). The partitioning and substitution of the Mg, Al, Ti, Ni, Cr, Mn, Si, and Zn elements increased in this relatively higher pressure environment cause of the highest concentrations of the Al, Ti, Ni, Cr, and Zn, in comparison with metamorphic magnetite. The mineral chemistry of the Heneshk magnetite (average elemental concentrations) is in accordance with the metamorphic magnetite and can consider as a pure magnetite with the low elemental concentration. Also, the \({{\rm{\delta }}^{34}}{S_{{H_2}S}}\) Heneshk mineralized fluid ranges between 39.8 to 40.6‰, indicating the contribution of the paleo-evaporates. The pleo-evaporates leached from the older strata during metamorphism, and their precipitation in the form of the sulfide minerals occurs through the TSR (Thermochemical Sulfate Reduction) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alirezaei, S. and Hassanzadeh, J., 2012, Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, SanandajSirjan belt: a new record of the Gondwana break-up in Iran. Lithos, 151, 122–134.

    Google Scholar 

  • Alric, G. and Virlogeus, D., 1977, Petrography and geochemistry study of metamorphic and magmatic in Dehbid-Bavanat region. Ph.D. Thesis, Geological Survey of Iran, Tehran, 129 p.

    Google Scholar 

  • Baker, E.M. and Andrew, A.S., 1991, Geologic, fluid inclusion, and stable isotope studies of the gold-bearing breccia pipe at Kidston, Queensland, Australia. Economic Geology, 86, 810–830.

    Google Scholar 

  • Barton, M.D., 2014, Iron oxide (Cu-Au-REE-P-Ag-U-Co) systems. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on the Geochemistry, Volume 13: Geochemistry of Mineral Deposits. Elsevier, Amsterdam, p. 515–541.

    Google Scholar 

  • Berberian, M. and King, G.C.P., 1981, Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210–265.

    Google Scholar 

  • Chen, H., 2013, External sulphur in IOCG mineralization: implications on definition and classification of the IOCG clan. Ore Geology Reviews, 51, 74–78.

    Google Scholar 

  • Chen, H., Clark, A.H., Kyser, T.K., Ullrich, T.D., Baxter, R., Chen, Y., and Moody, T.C., 2010, Evolution of the giant Marcona-Mina Justa iron oxide-copper-gold district, south-central Peru. Economic Geology, 105, 155–185.

    Google Scholar 

  • Claypool, G.E., Holser W.T., Kaplan, I.R., Sakai, H., and Zak, I., 1980, The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chemical Geology, 28, 199–260.

    Google Scholar 

  • Constantopoulos, J., 1994, Oxygen isotope geochemistry of the Coeur d’Alene mining district, Idaho. Economic Geology, 89, 944–951.

    Google Scholar 

  • Corriveau, L. and Spry, P.G., 2014, Metamorphosed hydrothermal ore deposits. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on the Geochemistry, Volume 13: Geochemistry of Mineral Deposits. Elsevier, Amsterdam, p. 175–194.

    Google Scholar 

  • Dare, S.A., Barnes, S.J., Beaudoin, G., Méric, J., Boutroy, E., and Potvin-Doucet, C., 2014, Trace elements in magnetite as petrogenetic indicators. Mineralium Deposita, 49, 785–796.

    Google Scholar 

  • Daroch, G.A. and Barton, M.D., 2011, Hydrothermal alteration and mineralization in Santo Domingo Sur iron oxide (Cu-Au) (IOCG) deposit, Atacama region, Chile. 11th Society for Geology Applied to Mineral Deposits Biennial Meeting “Let’s Talk Ore Deposits” (Expanded Abstract), Antofagasta, Chile, Sep. 26–29, p. 635–637.

  • Davidson, G.J., Paterson, H., Meffre, S., and Berry, R.F., 2007, Characteristics and origin of the Oak Dam East breccia-hosted, iron oxide Cu-U-(Au) deposit: Olympic Dam region, Gawler craton, South Australia. Economic Geology, 102, 1471–1498.

    Google Scholar 

  • Davoudian, A.R., Genser, J., Neubauer, F., and Shabanian, N., 2016, 40Ar/39Ar mineral ages of eclogites from North Shahrekord in the Sanandaj-Sirjan Zone, Iran: implications for the tectonic evolution of Zagros orogen. Gondwana Research, 37, 216–240.

    Google Scholar 

  • De Haller, A. and Fontboté, L., 2009, The Raúl-Condestable iron oxide copper-gold deposit, central coast of Peru: ore and related hydrothermal alteration, sulfur isotopes, and thermodynamic constraints. Economic Geology, 104, 365–384.

    Google Scholar 

  • Dupuis, C. and Beaudoin, G., 2011, Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46, 319–335.

    Google Scholar 

  • Eaton, G.F., Criss, R.E., Fleck, R.J., Bond, W.D., Cleland, R.W., and Wavra, C.S., 1995, Oxygen, carbon, and strontium isotope geochemistry of the Sunshine Mine, Coeur d’Alene mining district, Idaho. Economic Geology, 90, 2274–2286.

    Google Scholar 

  • Etheridge, M.A., Wall, V.J., and Vernon, R.H., 1983, The role of the fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology, 1, 205–226.

    Google Scholar 

  • Fergusson, C.L., Nutman, A.P., Mohajjel, M., and Bennett, V.C., 2016, The Sanandaj-Sirjan zone in the Neo-Tethyan suture, western Iran: zircon U-Pb evidence of late Palaeozoic rifting of northern Gondwana and mid-Jurassic orogenesis. Gondwana Research, 40, 43–57.

    Google Scholar 

  • Fleck, R.J., Criss, R.E., Eaton, G.F., Cleland, R.W., Wavra, C.S., and Bond, W.D., 2002, Age and origin of base and precious metal veins of the Coeur d’Alene mining district, Idaho. Economic Geology, 97, 23–42.

    Google Scholar 

  • Forslund, N., 2012, Alteration and fluid characterization of the Hamlin Lake IOCG occurrence, northwestern Ontario, Canada. M.Sc. Thesis, University of Lakehead, Thunder Bay, Canada, 285p.

    Google Scholar 

  • Frost, B.R., 1991, Magnetic petrology: factors that control the occurrence of magnetite in crustal rocks. Reviews in Mineralogy and Geochemistry, 25, 489–509.

    Google Scholar 

  • Galicki, M., Marshall, D., Staples, R., Thorkelson, D., Downie, C., Gallagher, C., Enkin, R., and Davis, W., 2012, Iron oxide ± Cu ± Au deposits in the Iron Range, Purcell Basin, southeastern British Columbia. Economic Geology, 107, 1293–1301.

    Google Scholar 

  • Goldfarb, R., Baker, T., Dube, B., Groves, D.I., Hart, C.J., and Gosselin, P., 2005, Distribution, character and genesis of gold deposits in metamorphic terranes. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P. (eds.), Economic Geology 100th Anniversary Volume (1905–2005). Society of Economic Geologist, Colorado, p. 407–450.

    Google Scholar 

  • Groves, D.I., 1993, The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28, 366–374.

    Google Scholar 

  • Groves, D.I., Bierlein, F.P., Meinert, L.D., and Hitzman, M.W., 2010, Iron oxide copper-gold (IOCG) deposits through Earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Economic Geology, 105, 641–654.

    Google Scholar 

  • Guilbert, J.M. and Park, C.F., Jr., 1986, The Geology of Ore Deposits (3rd edition). W.H. Freeman, New York, 985 p.

    Google Scholar 

  • Hassanzadeh, J. and Wernicke, B.P., 2016, The Neotethyan Sanandaj-Sirjan zone of Iran as an archetype for passive margin-arc transitions. Tectonics, 35, 586–621.

    Google Scholar 

  • Hitzman, M.W., Oreskes, N., and Einaudi, M.T., 1992, Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58, 241–287.

    Google Scholar 

  • Houshmandzadeh, A.R., Ohanian, T., Sahandi, M.R., Taraz, H., Aganabati, A., Soheili, M., and Hamdi, B., 1975, Geological map of Eglid Quadrangle (1: 250000). Report N.10, Geological Survey of Iran, Tehran, 165 p.

    Google Scholar 

  • Huang, X.W., Boutroy, E., Makvandi, S., Beaudoin, G., Corriveau, L., and De Toni, A.F., 2018, Trace element composition of iron oxides from IOCG and IOA deposits: relationship to hydrothermal alteration and deposit subtypes. Mineralium Deposita, 54, 525–552. https://doi.org/10.1007/s00126-018-0825-1

    Google Scholar 

  • John, D.A., Hofstra, A.H., Fleck, R.J., Brummer, J.E., and Saderholm, E.C., 2003, Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada. Economic Geology, 98, 425–464.

    Google Scholar 

  • Leach, D.L., Landis, G.P., and Hofstra, A.H., 1988, Metamorphic origin of the Coeur d’Alene base-and precious-metal veins in the belt basin, Idaho and Montana. Geology, 16, 122–125.

    Google Scholar 

  • Lopez, G.P., Hitzman, M.W., and Nelson, E.P., 2014, Alteration patterns and structural controls of the El Espino IOCG mining district, Chile. Mineralium Deposita, 49, 235–259.

    Google Scholar 

  • Mohajjel, M., Fergusson, C.L., and Sahandi, M.R., 2003, Cretaceous-Tertiary convergence and continental collision, Sanandaj-Sirjan zone, western Iran. Journal of Asian Earth Sciences, 21, 397–412.

    Google Scholar 

  • Nabatian, G., Rastad, E., Neubauer, F., Honarmand, M., and Ghaderi, M., 2015, Iron and Fe-Mn mineralisation in Iran: implications for Tethyan metallogeny. Australian Journal of Earth Sciences, 62, 211–241.

    Google Scholar 

  • Nadoll, P., Angerer, T., Mauk, J.L., French, D., and Walshe, J., 2014, The chemistry of hydrothermal magnetite: a review. Ore Geology Reviews, 61, 1–32.

    Google Scholar 

  • Nadoll, P., Mauk, J.L., Hayes, T.S., Koenig, A.E., and Box, S.E., 2012, Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Economic Geology, 107, 1275–1292.

    Google Scholar 

  • Nold, J.L., Dudley, M.A., and Davidson, P., 2014, The Southeast Missouri (USA) Proterozoic iron metallogenic province-types of deposits and genetic relationships to magnetite-apatite and iron oxide-copper-gold deposits. Ore Geology Reviews, 57, 154–171.

    Google Scholar 

  • Ohmoto, H. and Goldhaber, M.B., 1997, Sulfur and carbon isotopes. In: Barnes, H.D. (ed.), Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons Inc. New York, p. 517–612.

    Google Scholar 

  • Passchier, C.W. and Trouw, R.A., 2005, Microtectonics (2rd edition). Springer, Berlin, 366 p.

    Google Scholar 

  • Peevler, J., Fayek, M., Misra, K.C., and Riciputi, L.R., 2003, Sulfur isotope microanalysis of sphalerite by SIMS: constraints on the genesis of Mississippi valley-type mineralization, from the Mascot-Jefferson City district, East Tennessee. Journal of Geochemical Exploration, 80, 277–96.

    Google Scholar 

  • Pollard, P.J., 2006, An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold (IOCG) provinces. Mineralium Deposita, 41, 179–187.

    Google Scholar 

  • Rajabzadeh, M.A. and Rasti, S., 2017, Investigation on mineralogy, geochemistry and fluid inclusions of the Goushti hydrothermal magnetite deposit, Fars Province, SW Iran: a comparison with IOCGs. Ore Geology Reviews, 82, 93–107.

    Google Scholar 

  • Richards, J.P., 2015, Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews, 70, 323–345.

    Google Scholar 

  • Rieger, A.A., Marschik, R., Diaz, M., Holzl, S., Chiaradia, M., Akker, B., and Spangenberg, J.E., 2010, The hypogene iron oxide copper-gold mineralization in the Mantoverde district, northern Chile. Economic Geology, 105, 1271–1299.

    Google Scholar 

  • Roedder, E., 1984, Fluid Inclusions. Reviews in Mineralogy, Volume 12, Mineralogical Society of America, 646 p.

  • Sabzehei, M., Mirzaei, H., and Mostafavi, M., 2013, Petrographic evidences for the origin of iron in IOCG iron deposits of Kuh-E-Faryadoon and Kouli-Kosh, southeast Central Iran. Journal of Sciences, 24, 41–53.

    Google Scholar 

  • Samani, B., 2017, Deformation flow analysis and symmetry of Goushti shear zone, Sanandaj-Sirjan metamorphic belt, Iran. Geopersia, 7, 117–130.

    Google Scholar 

  • Sarkarinejad, K. and Azizi, A., 2008, Slip partitioning and inclined dextral transpression along the Zagros Thrust System, Iran. Journal of Structural Geology, 30, 116–136.

    Google Scholar 

  • Shahidi, A., Taraz, H., and Zamani Pedram, M., 1999, Geological report of the Dehbid Sheet (1:100,000). Geological Survey of Iran, Tehran, 165 p.

    Google Scholar 

  • Shanks, W.P.C., 2014, Stable isotope geochemistry of mineral deposits. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on the Geochemistry, Volume 13: Geochemistry of Mineral Deposits. Elsevier, Amsterdam, p. 59–85.

    Google Scholar 

  • Taylor, R., 2010, Ore Textures. Springer, Berlin, 288 p.

    Google Scholar 

  • Ueda, A. and Krouse, H.R., 1986, Direct conversion of sulphide and sulphate minerals to SO2 for isotope analyses. Geochemical Journal, 20, 209–212.

    Google Scholar 

  • Verdel, C., Wernicke, B.P., Hassanzadeh, J., and Guest, B., 2011, A Paleogene extensional arc flare-up in Iran. Tectonics, 30. https://doi.org/10.1029/2010TC002809

  • Vernon, R.H., 2004, A Practical Guide to Rock Microstructure (1st edition). Cambridge University Press, Cambridge, 446 p.

    Google Scholar 

  • Williams, P.J., Barton, M.D., Johnson, D.A., Fontboté, L., De Haller, A., Mark, G., Oliver, N.H., and Marschik, R., 2005, Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., and Richards, J.P. (eds.), Economic Geology 100th Anniversary Volume (1905–2005). Society of Economic Geologist, Colorado, p. 371–405.

    Google Scholar 

Download references

Acknowledgments

This project including EPMA, sulfur stable isotope analysis, and field studies are funded by the personal asset of the author (Mr. Mizan). We like to thanks professor J.L. Nold for reviewing the early version of this manuscript and Mr. Razfar from Iron Madkansar Company for accessing to the mine. Also, we thank N. Oksuz and an unknown reviewer for their thoughtful comments, aiding us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Mizan.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizan, M., Huang, XW. Genesis of the Heneshk IOCG deposit, Iran: magnetite mineral chemistry and sulfur isotope. Geosci J 24, 489–506 (2020). https://doi.org/10.1007/s12303-019-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12303-019-0050-7

Key words

Navigation