Skip to main content
Log in

Study the effect of 24-epibrassinolide application on the Cu/Zn-SOD expression and tolerance to drought stress in common bean

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

To study the possibility of increasing the drought tolerance of common bean with the exogenous application of 24-epibrassinolide (EBL), an experiment was conducted in 2016 and 2017. In this experiment, two irrigation levels (optimal irrigation and drought stress) were applied to the main plots and two common bean genotypes (Kusha cultivar and COS16 genotype) and four EBL concentrations (0, 2, 4, and 6 μM) were allocated to sub-plots as factorial. In the flowering stage, drought stress was applied and plants were sprayed with EBL. The results showed that drought stress reduced relative water content (RWC) and increased proline content, malondialdehyde (MDA) content, and antioxidant enzymes activity. However, exogenous application of EBL reduced the seed yield loss and increased the drought stress tolerance in both common bean genotypes by decreasing the MDA content and increasing the RWC, proline content, antioxidant enzymes activity, and nitrate reductase activity. It can be concluded that foliar spray of 4 µM EBL as the best concentration may increase the seed yield and enhance the drought stress tolerance of common bean. Also, Cu/Zn-SOD was up-regulated in response to the drought stress and exogenous EBL. The COS16 genotype showed better response to the drought stress and exogenous EBL than the Kusha cultivar, because of the higher up-regulation of Cu/Zn-SOD in this genotype compared to the Kusha cultivar. Therefore, EBL can be used as a plant growth regulator to enhance drought stress tolerance and minimize the seed yield loss of common bean caused by water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BRs:

Brassinosteroids

CAT:

Catalase

EBL:

24-Epibrassinolide

MDA:

Malondialdehyde

NR:

Nitrate reductase

POD:

Guaiacol peroxidase

RWC:

Relative water content

SOD:

Superoxide dismutase

References

  • Agami RA (2013) Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. S Afr J Bot 88:171–177

    CAS  Google Scholar 

  • Al-Ghamdi AA (2009) Evaluation of oxidative stress tolerance in two wheat (Triticum aestivum) cultivars in response to drought. Int J Agric Biol 11(1):7–12

    CAS  Google Scholar 

  • Andrade J, Larque-Saavedra A, Trejo C (1995) Proline accumulation in leaves of four cultivars of Phaseolus vulgaris L. with different drought resistance. Phyton-Rev Int Bot Exp 57(2):149–158

    CAS  Google Scholar 

  • Angra S, Kaur S, Singh K, Pathania D, Kaur N, Sharma S, Nayyar H (2010) Water-deficit stress during seed filling in contrasting soybean genotypes: association of stress sensitivity with profiles of osmolytes and antioxidants. Int J Agric Res 5(6):328–345

    CAS  Google Scholar 

  • Anjum S, Wang L, Farooq M, Hussain M, Xue L, Zou C (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197(3):177–185

    CAS  Google Scholar 

  • Arora P, Bhardwaj R, Kanwar MK (2010) 24-epibrassinolide induced antioxidative defense system of Brassica juncea L. under Zn metal stress. Physiol Mol Biol Plants 16(3):285–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38(3):209–215

    CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8

    CAS  PubMed  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287

    CAS  PubMed  Google Scholar 

  • Bhardwaj R, Arora N, Sharma P, Arora HK (2007) Effects of 28-homobrassinolide on seedling growth, lipid peroxidation and antioxidative enzyme activities under nickel stress in seedlings of Zea mays L. Asian J Plant Sci 6(5):765–772

    CAS  Google Scholar 

  • Borges A, Tsai SM, Caldas DGG (2012) Validation of reference genes for RT-qPCR normalization in common bean during biotic and abiotic stresses. Plant Cell Rep 31(5):827–838

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123(1):57–66

    CAS  Google Scholar 

  • Casadebaig P, Debaeke P, Lecoeur J (2008) Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes. Eur J Agron 28(4):646–654

    Google Scholar 

  • Chance B, Maehly A (1955) [136] Assay of catalases and peroxidases. Methods Enzymol 2:764–775

    Google Scholar 

  • Choe S (2006) Brassinosteroid biosynthesis and inactivation. Physiol Plant 126(4):539–548

    CAS  Google Scholar 

  • Clouse SD, Zurek DM, McMorris TC, Baker ME (1992) Effect of brassinolide on gene expression in elongating soybean epicotyls. Plant Physiol 100(3):1377–1383

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colom M, Vazzana C (2003) Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. Environ Exp Bot 49(2):135–144

    CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin M, Zuily-Fodil Y, De Carvalho M (2010) An aspartic acid protease from common bean is expressed ‘on call’ during water stress and early recovery. J Plant Physiol 167(18):1606–1612

    CAS  PubMed  Google Scholar 

  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot 32(1):79–91

    CAS  Google Scholar 

  • Ding H-D, Zhu X-H, Zhu Z-W, Yang S-J, Zha D-S, Wu X-X (2012) Amelioration of salt-induced oxidative stress in eggplant by application of 24-epibrassinolide. Biol Plant 56(4):767–770

    CAS  Google Scholar 

  • Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37(1):36–48

    Google Scholar 

  • Eraslan F, Inal A, Savasturk O, Gunes A (2007) Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Sci Hortic 114(1):5–10

    CAS  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan S, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31(5):889–897

    CAS  Google Scholar 

  • Fresneau C, Ghashghaie J, Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. J Exp Bot 58(11):2983–2992

    CAS  PubMed  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Aquino LA (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hortic 126(3):379–384

    CAS  Google Scholar 

  • Gunes A, Cicek N, Inal A, Alpaslan M, Eraslan F, Guneri E, Guzelordu T (2006) Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and post-anthesis stages and its relations with nutrient uptake and efficiency. Plant Soil Environ 52(8):368–376

    CAS  Google Scholar 

  • Gupta KJ, Stoimenova M, Kaiser WM (2005) In higher plants, only root mitochondria, but not leaf mitochondria reduce nitrite to NO, in vitro and in situ. J Exp Bot 56(420):2601–2609

    CAS  PubMed  Google Scholar 

  • Habibi G (2013) Effect of drought stress and selenium spraying on photosynthesis and antioxidant activity of spring barley. Acta Agric Slov 101(1):31–39

    CAS  Google Scholar 

  • Hameed A, Bibi N, Akhter J, Iqbal N (2011) Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem 49(2):178–185

    CAS  PubMed  Google Scholar 

  • Hayat S, Ali B, Hasan S, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60(1):33–41

    CAS  Google Scholar 

  • Hayat S, Hasan S, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69(2):105–112

    CAS  Google Scholar 

  • Hayat S, Alyemeni MN, Hasan SA (2012) Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J Biol Sci 19(3):325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophy 125(1):189–198

    CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11(1):100–105

    Google Scholar 

  • Jithesh M, Prashanth S, Sivaprakash K, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25(8):865–876

    CAS  PubMed  Google Scholar 

  • Kang Y, Guo S (2011) Role of brassinosteroids on horticultural crops. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Dordrecht, pp 269–288

    Google Scholar 

  • Kartal G, Temel A, Arican E, Gozukirmizi N (2009) Effects of brassinosteroids on barley root growth, antioxidant system and cell division. Plant Growth Regul 58(3):261–267

    CAS  Google Scholar 

  • Kaur H, Sirhindi G, Bhardwaj R (2015) Alteration of antioxidant machinery by 28-homobrassinolide in Brassica juncea L. under salt stress. Adv Appl Sci Res 6:166–172

    Google Scholar 

  • Khan M, Panda S (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30(1):81–89

    CAS  Google Scholar 

  • Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than-susceptible wheat cultivar under field conditions. Environ Exp Bot 60(2):276–283

    CAS  Google Scholar 

  • Korir P, Nyabundi J, Kimurto P (2006) Genotypic response of common bean (Phaseolus vulgaris L.) to moisture stress conditions in Kenya. Asian J Plant Sci 5(1):24–32

    Google Scholar 

  • Li K, Wang H, Han G, Wang Q, Fan J (2008) Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New For 35(3):255–266

    Google Scholar 

  • Li Y, Liu Y, Xu X, Jin M, An L, Zhang H (2012) Effect of 24-epibrassinolide on drought stress-induced changes in Chorispora bungeana. Biol Plant 56(1):192–196

    Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Signal 19(9):998–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − ΔΔCT method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Lizana C, Wentworth M, Martinez JP, Villegas D, Meneses R, Murchie EH, Pastenes C, Lercari B, Vernieri P, Horton P, Pinto M (2006) Differential adaptation of two varieties of common bean to abiotic stress: I. Effects of drought on yield and photosynthesis. J Exp Bot 57(3):685–697

    CAS  PubMed  Google Scholar 

  • MacKintosh C, Douglas P, Lillo C (1995) Identification of a protein that inhibits the phosphorylated form of nitrate reductase from spinach (Spinacia oleracea) leaves. Plant Physiol 107(2):451–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mai Y, Lin J, Zeng X, Pan R (1989) Effect of homobrassinolide on the activity of nitrate reductase in rice seedlings. Plant Physiol Commun 2:50–52

    Google Scholar 

  • Majidi M, Farsi M, Bahrami A, Behravan J, Marashi S (2013) Cloning, gene expression analysis, and phylogenic relationship of dbat gene from iranian endemic yew (Taxus baccata L.). J Med Plants 4(48):91–103

    Google Scholar 

  • Malan C, Greyling MM, Gressel J (1990) Correlation between CuZn superoxide dismutase and glutathione reductase, and environmental and xenobiotic stress tolerance in maize inbreds. Plant Sci 69(2):157–166

    CAS  Google Scholar 

  • Malik AA, Li W-G, Lou L-N, Weng J-H, Chen J-F (2010) Biochemical/physiological characterization and evaluation of in vitro salt tolerance in cucumber. Afr J Biotech 9(22):3284–3292

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410

    CAS  PubMed  Google Scholar 

  • Mizoi J, Shinozaki K (2012) Yamaguchi-Shinozaki K AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophy Acta (BBA)-Gene Regul Mech 1819(2):86–96

    CAS  Google Scholar 

  • Mohammadi M, Pouryousef M, Tavakoli A, Mohseni Fard E (2019) Improvement in photosynthesis, seed yield and protein content of common bean (Phaseolus vulgaris) by foliar application of 24-epibrassinolide under drought stress. Crop Pasture Sci 70(6):535–545

    CAS  Google Scholar 

  • Najaphy A, Khamssi NN, Mostafaie A, Mirzaee H (2010) Effect of progressive water deficit stress on proline accumulation and protein profiles of leaves in chickpea. Afr J Biotech 9(42):7033–7036

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22(5):867–880

    CAS  Google Scholar 

  • Nazari M, Amiri RM, Mehraban F, Khaneghah HZ (2012) Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russ J Plant Physiol 59(2):183–189

    CAS  Google Scholar 

  • Niknam V, Razavi N, Ebrahimzadeh H, Sharifizadeh B (2006) Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biol Plant 50(4):591–596

    CAS  Google Scholar 

  • Pal A, Acharya K, Vats S, Kumar S, Ahuja PS (2013) Over-expression of PaSOD in transgenic potato enhances photosynthetic performance under drought. Biol Plant 57(2):359–364

    CAS  Google Scholar 

  • Perl-Treves R, Galun E (1991) The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol 17(4):745–760

    CAS  PubMed  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129(2):232–237

    CAS  Google Scholar 

  • Rosales-Serna R, Kohashi-Shibata J, Acosta-Gallegos JA, Trejo-López C, Jn Ortiz-Cereceres, Kelly JD (2004) Biomass distribution, maturity acceleration and yield in drought-stressed common bean cultivars. Field Crops Res 85(2–3):203–211

    Google Scholar 

  • Sairam R (1994) Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture-stress conditions of two wheat varieties. Plant Growth Regul 14(2):173–181

    CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Google Scholar 

  • Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N (2014) Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene 2:407–417

    PubMed  PubMed Central  Google Scholar 

  • Siddiqui MH, Al-Khaishany MY, Al-Qutami MA, Al-Whaibi MH, Grover A, Ali HM, Al-Wahibi MS, Bukhari NA (2015) Response of different genotypes of faba bean plant to drought stress. Int J Mol Sci 16(5):10214–10227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sirhindi G, Kumar S, Bhardwaj R, Kumar M (2009) Effects of 24-epibrassinolide and 28-homobrassinolide on the growth and antioxidant enzyme activities in the seedlings of Brassica juncea L. Physiol Mol Biol Plants 15(4):335–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaresan S, Sudhakaran P (1995) Water stress-induced alterations in the proline metabolism of drought-susceptible and-tolerant cassava (Manihot esculenta) cultivars. Physiol Plant 94(4):635–642

    CAS  Google Scholar 

  • Svetleva D, Krastev V, Dimova D, Mitrovska Z, Miteva D, Parvanova P, Chankova S (2012) Drought tolerance of Bulgarian common bean genotypes, characterised by some biochemical markers for oxidative stress. J Cent Eur Agric 13(2):349–361

    Google Scholar 

  • Sytar O, Kumari P, Yadav S, Brestic M, Rastogi A (2019) Phytohormone priming: regulator for heavy metal stress in plants. J Plant Growth Regul 38(2):739–752

    CAS  Google Scholar 

  • Talaat N, Shawky B (2012) 24-epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ Exp Bot 82:80–88

    CAS  Google Scholar 

  • Talaat N, Shawky B (2013) 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.). Acta Physiol Plant 35(3):729–740

    CAS  Google Scholar 

  • Talaat N, Shawky B (2016) Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul 35(2):518–533

    CAS  Google Scholar 

  • Talaat NB, Shawky BT, Ibrahim AS (2015) Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot 113:47–58

    CAS  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Sonjaroon W, Kaveeta L, Chai-Arree W, Pankean P, Suksamrarn A (2015) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53(2):312–320

    CAS  Google Scholar 

  • Tuba Bicer B, Narin Kalender A, Akar D (2004) The effect of irrigation on spring-sown chickpea. J Agron 3(3):154–158

    Google Scholar 

  • Vardhini BV, Anjum NA (2015) Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Front Environ Sci 2:1–16

    Google Scholar 

  • Wang X-L, Chen X, Yang T-B, Cheng Q, Cheng Z-M (2017) Genome-wide identification of bZIP family genes involved in drought and heat stresses in strawberry (Fragaria vesca). Int J Genom 2017:1–14

    Google Scholar 

  • Yuan G, Jia C, Li Z, Sun B, Zhang L, Liu N, Wang Q (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hortic 126(2):103–108

    CAS  Google Scholar 

  • Zeid I, Shedeed Z (2006) Response of alfalfa to putrescine treatment under drought stress. Biol Plant 50(4):635–640

    CAS  Google Scholar 

  • Zhang M, Zhai Z, Tian X, Duan L, Li Z (2008) Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regul 56(3):257–264

    CAS  Google Scholar 

  • Zhang W, Li N, Qi F, Chen X, Hao J, Yu C, Lin X (2014) Isolation and expression analysis of Cu/Zn superoxide dismutase genes from three Caragana species. Russ J Plant Physiol 61(5):656–663

    CAS  Google Scholar 

  • Zheng Y, Xu B, Ren K, Zhang Y, Wu J (2017) Impact of soil drench and foliar spray of 24-epibrassinolide on the growth, yield, and quality of field-grown Moringa oleifera in southwest china. J Plant Growth Regul 36(4):931–941

    CAS  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relationsand photosynthesis. Emir J Food Agric 24(1):57–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Tavakoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, M., Tavakoli, A., Pouryousef, M. et al. Study the effect of 24-epibrassinolide application on the Cu/Zn-SOD expression and tolerance to drought stress in common bean. Physiol Mol Biol Plants 26, 459–474 (2020). https://doi.org/10.1007/s12298-020-00757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-020-00757-7

Keywords

Navigation