Skip to main content

Advertisement

Log in

Advancing NSCLC Diagnosis: The Role of Tumor-Derived Serum Exosomal SNORD60 as a Novel Biomarker

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Due to the lack of efficient diagnosis techniques, non-small cell lung cancer (NSCLC) continues to be the main contributor to global death from cancer. Consequently, our research aims to identify reliable biomarkers for diagnosing non-small cell lung cancer (NSCLC) by using serum exosomal short nucleolar RNAs (snoRNAs). Based on the databases, we selected SNORD60 and further verified it in 48 paired FFPE tissues. To define exosomes isolated from the serum, we conducted transmission electron microscopy (TEM) and qNano besides western blots. qRT-PCR helped further verify SNORD60 in exosomal serum from 132 NSCLC patients and 143 participants in good health. The receiver operating characteristic (ROC) was employed to estimate the diagnostic efficacy of SNORD60, both alone and in combination with carcinoembryonic antigen (CEA) and cytokeratin 19 fragment (CYFRA21-1). SNORD60 was significantly overexpressed in tissues and serum exosomes of NSCLC patients compared to those of good-health individuals. To evaluate the effectiveness of diagnostic biomarkers for NSCLC and its early stage, serum exosomal SNORD60 was found to have the ability to be a diagnostic biomarker, as well as CEA or CYFRA21-1 with an exosomal combination of SNORD60. The exosomal level of SNORD60 is significantly overexpressed in patients with NSCLC, which offers a promising diagnostic biomarker of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The author can provide original data supporting the conclusion of this investigation without reservation.

References

  1. Gridelli C, Rossi A, Carbone DP, Guarize J, Karachaliou N, Mok T, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. https://doi.org/10.1038/nrdp.2015.9.

    Article  PubMed  Google Scholar 

  2. Brody H. Lung cancer. Nature. 2020;587(7834):S7. https://doi.org/10.1038/d41586-020-03152-0.

    Article  CAS  PubMed  Google Scholar 

  3. Jin G, Miao R, Hu Z, Xu L, Huang X, Chen Y, et al. Putative functional polymorphisms of MMP9 predict survival of NSCLC in a Chinese population. Int J Cancer. 2009;124(9):2172–8. https://doi.org/10.1002/ijc.24190.

    Article  CAS  PubMed  Google Scholar 

  4. Evison M, AstraZeneca UKL. The current treatment landscape in the UK for stage III NSCLC. Br J Cancer. 2020;123(Suppl 1):3–9. https://doi.org/10.1038/s41416-020-01069-z.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60. https://doi.org/10.1016/j.devcel.2019.04.011.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang J, Li S, Li L, Li M, Guo C, Yao J, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinform. 2015;13(1):17–24. https://doi.org/10.1016/j.gpb.2015.02.001.

    Article  CAS  Google Scholar 

  7. Zhuo C, Yi T, Pu J, Cen X, Zhou Y, Feng S, et al. Exosomal linc-FAM138B from cancer cells alleviates hepatocellular carcinoma progression via regulating miR-765. Aging (Albany NY). 2020;12(24):26236–47. https://doi.org/10.18632/aging.202430.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer. 2019;18(1):116. https://doi.org/10.1186/s12943-019-1041-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dupuis-Sandoval F, Poirier M, Scott MS. The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA. 2015;6(4):381–97. https://doi.org/10.1002/wrna.1284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wajahat M, Bracken CP, Orang A. Emerging functions for snoRNAs and snoRNA-derived fragments. Int J Mol Sci. 2021;22(19):10193. https://doi.org/10.3390/ijms221910193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding Y, Sun Z, Zhang S, Zhou L, Xu Q, Zhou D, et al. Identification of snoRNA SNORA71A as a novel biomarker in prognosis of hepatocellular carcinoma. Dis Markers. 2020;2020:8879944. https://doi.org/10.1155/2020/8879944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen L, Lin C, Lu W, He J, Wang Q, Huang Y, et al. Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol Toxicol. 2023;39(4):1377–94. https://doi.org/10.1007/s10565-022-09765-7.

    Article  CAS  PubMed  Google Scholar 

  13. Gong J, Li Y, Liu CJ, Xiang Y, Li C, Ye Y, et al. A pan-cancer analysis of the expression and clinical relevance of small nucleolar rnas in human cancer. Cell Rep. 2017;21(7):1968–81. https://doi.org/10.1016/j.celrep.2017.10.070.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Z, Tang Y, Song X, Xie L, Zhao S, Song X. Tumor-derived exosomal miRNAs as diagnostic biomarkers in non-small cell lung cancer. Front Oncol. 2020;10: 560025. https://doi.org/10.3389/fonc.2020.560025.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu M, Song XG, Zhao YJ, Dong XH, Niu LM, Zhang ZJ, et al. Circulating serum exosomal long noncoding RNAs FOXD2-AS1, NRIR, and XLOC_009459 as diagnostic biomarkers for colorectal cancer. Front Oncol. 2021;11: 618967. https://doi.org/10.3389/fonc.2021.618967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Trummer A, Bethge A, Dickgreber N, Dittrich I, Golpon H, Hoffknecht P, et al. NSCLC with uncommon EGFR mutations treated with atezolizumab plus bevacizumab and chemotherapy. Lung Cancer. 2022;174:141–5. https://doi.org/10.1016/j.lungcan.2022.11.006.

    Article  CAS  PubMed  Google Scholar 

  17. Pasello G, Lorenzi M, Pretelli G, Comacchio GM, Pezzuto F, Schiavon M, et al. Diagnostic-therapeutic pathway and outcomes of early stage NSCLC: a focus on EGFR testing in the real-world. Front Oncol. 2022;12: 909064. https://doi.org/10.3389/fonc.2022.909064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen H, Rong Z, Ge L, Yu H, Li C, Xu M, et al. Leader gene identification for digestive system cancers based on human subcellular location and cancer-related characteristics in protein-protein interaction networks. Front Genet. 2022;13: 919210. https://doi.org/10.3389/fgene.2022.919210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu Y, Ruan H, Li S, Ye Y, Hong W, Gong J, et al. The genetic and pharmacogenomic landscape of snoRNAs in human cancer. Mol Cancer. 2020;19(1):108. https://doi.org/10.1186/s12943-020-01228-z.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. Wiley Interdiscip Rev: RNA. 2017;8(4):e1417. https://doi.org/10.1002/wrna.1417.

    Article  CAS  Google Scholar 

  21. Warner WA, Spencer DH, Trissal M, White BS, Helton N, Ley TJ, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151–63. https://doi.org/10.1182/bloodadvances.2017006668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han C, Sun LY, Luo XQ, Pan Q, Sun YM, Zeng ZC, et al. Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Rep. 2022;38(13): 110421. https://doi.org/10.1016/j.celrep.2022.110421.

    Article  CAS  PubMed  Google Scholar 

  23. Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, et al. Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun. 2021;12(1):5214. https://doi.org/10.1038/s41467-021-25457-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cui C, Liu Y, Gerloff D, Rohde C, Pauli C, Kohn M, et al. NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration. Oncogene. 2021;40(5):909–21. https://doi.org/10.1038/s41388-020-01570-y.

    Article  CAS  PubMed  Google Scholar 

  25. van der Werf J, Chin CV, Fleming NI. SnoRNA in cancer progression, metastasis and immunotherapy response. Biology. 2021;10(8):809. https://doi.org/10.3390/biology10080809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shen L, Lin C, Lu W, He J, Wang Q, Huang Y, et al. Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol Toxicol. 2022. https://doi.org/10.1007/s10565-022-09765-7.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen S, Blank MF, Iyer A, Huang B, Wang L, Grummt I, et al. SIRT7-dependent deacetylation of the U3–55k protein controls pre-rRNA processing. Nat Commun. 2016;7:10734. https://doi.org/10.1038/ncomms10734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou H, Yao Y, Li Y, Guo N, Zhang H, Wang Z, et al. Identification of small nucleolar RNA SNORD60 as a potential biomarker and its clinical significance in lung adenocarcinoma. Biomed Res Int. 2022;2022:5501171. https://doi.org/10.1155/2022/5501171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Shang X, Yu M, Bi Z, Wang K, Zhang Q, et al. A three-snoRNA signature: SNORD15A, SNORD35B and SNORD60 as novel biomarker for renal cell carcinoma. Cancer Cell Int. 2023;23(1):136. https://doi.org/10.1186/s12935-023-02978-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu W, Chen X, Liu X, Bao HJ, Li QH, Xian JY, Chen S. SNORD60 promotes the tumorigenesis and progression of endometrial cancer through binding PIK3CA and regulating PI3K/AKT/mTOR signaling pathway. Mol Carcinog. 2023;62(4):413–26. https://doi.org/10.1002/mc.23495.

    Article  CAS  PubMed  Google Scholar 

  31. Kitagawa T, Taniuchi K, Tsuboi M, Sakaguchi M, Kohsaki T, Okabayashi T, et al. Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol Oncol. 2019;13(2):212–27. https://doi.org/10.1002/1878-0261.12398.

    Article  CAS  PubMed  Google Scholar 

  32. Song J, Zheng A, Li S, Zhang W, Zhang M, Li X, et al. Clinical significance and prognostic value of small nucleolar RNA SNORA38 in breast cancer. Front Oncol. 2022;12: 930024. https://doi.org/10.3389/fonc.2022.930024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu J, Liao X, Zhu X, Lv P, Li R. Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma. Cancer Med. 2020;9(19):7018–33. https://doi.org/10.1002/cam4.3361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ding Y, Sun Z, Zhang S, Xu Q, Zhou L, Zhou D, Wang W. Revealing the clinical significance and prognostic value of small nucleolar RNA SNORD31 in hepatocellular carcinoma. Biosci Rep. 2020;40(7):BSR20201479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun Y, Chen E, Li Y, Ye D, Cai Y, Wang Q, et al. H/ACA box small nucleolar RNA 7B acts as an oncogene and a potential prognostic biomarker in breast cancer. Cancer Cell Int. 2019;19:125. https://doi.org/10.1186/s12935-019-0830-1.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang K, Song X, Li X, Zhang Z, Xie L, Song X. Plasma SNORD83A as a potential biomarker for early diagnosis of non-small-cell lung cancer. Future Oncol. 2022;18(7):821–32. https://doi.org/10.2217/fon-2021-1278.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded via the Natural Science Foundation of Shandong Province (no. ZR2023QH096), the Tai’an City Science and Technology Development Plan Project (2022NS332, 2022NS212) and the Nursery Project of the Affiliated Tai’an City Central Hospital of Qingdao University (no.2022MPM01).

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the project design, interpretation of results, data analysis, and manuscript review; ZJZ and XML designed the experiments; LL and QZ conducted the experiments; NY performed the statistical analysis; KYW and NY wrote the article. All authors have accepted the final manuscript.

Corresponding authors

Correspondence to Xinmei Liang or Zhijun Zhang.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest.

Ethical approval

The research conducted with human subjects underwent a thorough evaluation and received clearance from the Affiliated Taian City Central Hospital Committee of Qingdao University (approval number: 2023–05-10). Each participant provided their informed permission in compliance with the principles outlined in the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (TIF 298 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, K., Yuan, N. et al. Advancing NSCLC Diagnosis: The Role of Tumor-Derived Serum Exosomal SNORD60 as a Novel Biomarker. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01230-y

Keywords

Navigation