Skip to main content

Advertisement

Log in

Cancer Vaccines: A Novel Revolutionized Approach to Cancer Therapy

  • REVIEW ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Over the past few decades, there has been significant advancement in the field of tumor immunotherapy. For many years vaccination against infectious diseases have been available. On the other hand very few cancer vaccines have been approved for human use. Ideal Cancer vaccines are biological response modifier work by stimulating both humoral and cellular immunity while overcoming the immunological suppression found in tumor. Two types of cancer vaccine: Prophylactic and therapeutic cancer vaccines are recommended for clinical use of individuals. HPV and HBV vaccines are the two widely used preventive vaccine used for treatment of cervical and hepatocellular carcinoma respectively and are approved by Food and Drug Administration (FDA). In therapeutic vaccine only three are approved: Sipuleucel T-cell vaccine for treatment refractory prostatic cancer, BCG vaccine for early bladder cancer and T-VEC for inoperable melanoma. Active ingredient in all cancer vaccines is an antigen. Antigens used for formulating cancer vaccines along with adjuvants optimizes immunogenicity in it. Heterogeneity within and between cancer types, screening and identifying suitable antigen specific to tumors and selection of vaccine delivery platforms are challenges in the development of vaccines. Adoptive cell therapy, Chimeric antigen receptor T cell therapy are recent breakthrough for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ginglen JG, Doyle MQ. Immunization. In: Stat Pearls. Treasure Island (FL): StatPearls Publishing; 2023.

  2. Hajdu SI. A note from history: Landmarks in history of cancer, part 1. Cancer. 2011;117(5):1097–102.

    Article  PubMed  Google Scholar 

  3. Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol. 2019;10:2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oiseth SJ, Aziz MS. Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat. 2017;3:250–61.

    Article  CAS  Google Scholar 

  5. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases 1893. Clin Orthop Relat Res. 1991;262:3–11.

    Google Scholar 

  6. Morales A, Eidinger D, Bruce AW. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J Urol. 1976;116(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  7. Decker WK, da Silva RF, Sanabria MH, Angelo LS, Guimarães F, Burt BM, et al. Cancer immunotherapy: historical perspective of a clinical revolution and emerging preclinical animal models. Front Immunol. 2017;8:829.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beasley RP. Hepatitis B Virus. The major etiology of hepatocellular carcinoma. Cancer. 1988;61(10):1942–56.

    Article  CAS  PubMed  Google Scholar 

  9. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vesely MD, Schreiber RD. Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Ann N Y Acad Sci. 2013;1284(1):1–5.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  13. Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res. 2019;38:255.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125(26):4017–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tormoen GW, Crittenden MR, Gough MJ. Role of the immunosuppressive microenvironment in immunotherapy. Adv Radiat Oncol. 2018;3:520–6.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 2022;13:868695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17(9):559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–80.

    Article  CAS  PubMed  Google Scholar 

  19. Halle S, Halle O, Förster R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol. 2017;38(6):432–43.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Guan XY, Jiang P. Cytokine and chemokine signals of T-cell exclusion in tumors. Front Immunol. 2020;11:594609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer vaccines, adjuvants, and delivery systems. Front Immunol. 2021;12:627932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  23. Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol CVI. 2011;18(1):23.

    Article  CAS  PubMed  Google Scholar 

  24. Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–78.

    Article  CAS  PubMed  Google Scholar 

  25. Weon JL, Potts PR. The MAGE protein family and cancer. Curr Opin Cell Biol. 2015;37:1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y. Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res. 1998;58:4895–901.

    CAS  PubMed  Google Scholar 

  27. Correale P, Walmsley K, Nieroda C, Zaremba S, Zhu M, Schlom J, et al. In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst. 1997;89:293–300.

    Article  CAS  PubMed  Google Scholar 

  28. Lam KW, Li CY, Yam LT, Sun T, Lee G, Ziesmer S. Improved immunohistochemical detection of prostatic acid phosphatase by a monoclonal antibody. Prostate. 1989;15:13–21.

    Article  CAS  PubMed  Google Scholar 

  29. Disis ML, Wallace DR, Gooley TA, Dang Y, Slota M, Lu H, et al. Concurrent trastuzumab and HER2/neu-specific vaccination in patients with metastatic breast cancer. J Clin Oncol. 2009;27:4685–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Srivastava PK. Neoepitopes of cancers: looking back, looking ahead. Cancer Immunol Res. 2015;3(9):969–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18(1):128.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tsao SW, Tramoutanis G, Dawson CW, Lo AKF, Huang DP. The significance of LMP1 expression in nasopharyngeal carcinoma. Cancer Biol. 2002;12:473–87.

    Article  CAS  Google Scholar 

  33. Yarchoan M, Gane E, Marron TU, Rochestie S, Cooch N, Peters J, et al. Personalized DNA neoantigen vaccine in combination with plasmid IL-12 and pembrolizumab for the treatment of patients with advanced hepatocellular carcinoma. J Clin Oncol. 2021;39(15):2680.

    Article  Google Scholar 

  34. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanovic S, Gouttefangeas C, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature. 2019;565(7738):240–5.

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Flores JE, Thompson AJ, Ryan M, Howell J. The global impact of hepatitis B Vaccination on hepatocellular carcinoma. Vaccines (Basel). 2022;10(5):793.

    Article  PubMed  Google Scholar 

  36. Chang MH. Hepatitis B virus and cancer prevention. Recent Results Cancer Res. 2011;188:75–84.

    Article  CAS  PubMed  Google Scholar 

  37. Chang MH, You SL, Chen CJ, Liu CJ, Lee CM, Sm Lin, et al. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J Natl Cancer Inst. 2009;101(19):1348–55.

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Xu C. Human papillomavirus-related cancers. Adv Exp Med Biol. 2017;1018:23–34.

    Article  CAS  PubMed  Google Scholar 

  39. Kaarthigeyan K. Cervical cancer in India and HPV vaccination. Indian J Med Paediatr Oncol. 2012;33(1):7–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. World Health Organization. Human papillomavirus vaccines: WHO position paper, May 2017–Recommendations. Vaccine. 2017;35(43):5753–5.

    Article  Google Scholar 

  41. History of vaccines. Cancer vaccines and Immunotherapy (2018) Available online at : https://www.historyofvaccines.org/content/articles/cancervaccinesandimmunotherapy (Accessed 19 Nov 2023).

  42. de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 2008;57:1569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.

    Article  CAS  PubMed  Google Scholar 

  44. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  CAS  PubMed  Google Scholar 

  46. Anassi E, Ndefo UA. Sipuleucel-T (Provenge) injection: the first immunotherapy agent (vaccine) for hormone-refractory prostate cancer. Pharm Ther. 2011;36(4):197.

    Google Scholar 

  47. Luca S, Mihaescu T. History of BCG vaccine. Maedica (Bucur). 2013;8(1):53.

    PubMed  Google Scholar 

  48. Lamm DL, Thor DE, Harris SC, Reyna JA, Stogdill VD, Radwin HM. Bacillus Calmette-Guerin immunotherapy of superficial bladder cancer. J Urol. 1980;124(1):38–42.

    Article  CAS  PubMed  Google Scholar 

  49. Cardillo F, Bonfim M, da Silva Vasconcelos Sousa P, Mengel J, Ribeiro Castello-Branco LR, Pinho RT. Bacillus Calmette-guérin immunotherapy for cancer. Vaccines (Basel). 2021;9(5):439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kaufman HL, Shalhout SZ, Iodice G. Talimogene laherparepvec: moving from first-in-class to best-in-class. Front Mol Biosci. 2022;9:834841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel). 2021;13(6):1383.

    Article  CAS  PubMed  Google Scholar 

  52. Fu C, Zhou L, Mi QS, Jiang A. DC-based vaccines for cancer immunotherapy. Vaccines (Basel). 2020;8(4):706.

    Article  CAS  PubMed  Google Scholar 

  53. Srinivasan P, Wu X, Basu M, Rossi C, Sandler AD. PD-L1 checkpoint inhibition and anti-CTLA-4 whole tumor cell vaccination counter adaptive immune resistance: a mouse neuroblastoma model that mimics human disease. PLoS Med. 2018;15(1):e1002497.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol. 2008;38(4):1033–42.

    Article  CAS  PubMed  Google Scholar 

  55. Southwood S, Sidney J, Kondo A, del Guercio MF, Appella E, Hoffman S, et al. Several common HLA-DR types share largely overlapping peptide binding repertoires. J Immunol. 1998;160(7):3363–73.

    Article  CAS  PubMed  Google Scholar 

  56. Tashiro H, Brenner MK. Immunotherapy against cancer-related viruses. Cell Res. 2017;27(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  57. Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer. 2018;6:1–13.

    Article  Google Scholar 

  58. Russell SJ, Barber GN. Oncolytic viruses as antigen-agnostic cancer vaccines. Cancer Cell. 2018;33(4):599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pham T, Roth S, Kong J, Guerra G, Narasimhan V, Pereira L, et al. An Update on immunotherapy for solid tumors: a review. Ann Surg Oncol. 2018;25:3404–12.

    Article  PubMed  Google Scholar 

  60. Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev. 2011;239:62–84.

    Article  CAS  PubMed  Google Scholar 

  61. MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J Infect Dis. 1998;178(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  62. Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: strategies for improving immunogenicity and efficacy. Pharmacol Ther. 2016;165:32–49.

    Article  CAS  PubMed  Google Scholar 

  63. Bloom K, van den Berg F, Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28:117–29.

    Article  CAS  PubMed  Google Scholar 

  64. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sahin U, Kariko K, Tureci O. mRNA-based therapeutics—developing a new class of drugs. Nat Rev Drug Discov. 2014;13(10):759–80.

    Article  CAS  PubMed  Google Scholar 

  66. Donninger H, Li C, Eaton JW, Yaddanapudi K. Cancer vaccines: promising therapeutics or an unattainable dream. Vaccines (Basel). 2021;9(6):668.

    Article  CAS  PubMed  Google Scholar 

  67. Bayan CY, Lopez AT, Gartrell RD, Komatsubara KM, Bogardus M, Rao N, et al. The role of oncolytic viruses in the treatment of melanoma. Curr Oncol Rep. 2018;20(10):80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Song H, Zhong LP, He J, Huang Y, Zhao YX. Application of Newcastle disease virus in the treatment of colorectal cancer. World J Clin Cases. 2019;7(16):2143–54.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Berd D, Maguire HC Jr, McCue P, Mastrangelo MJ. Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologic results in 64 patients. J Clin Oncol. 1990;8(11):1858–67.

    Article  CAS  PubMed  Google Scholar 

  70. Möller P, Sun Y, Dorbic T, Alijagic S, Makki A, Jurgovsky K, et al. Vaccination with IL-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with a good clinical performance status: a clinical phase I study. Br J Cancer. 1998;77(11):1907–16.

    Article  PubMed  Google Scholar 

  71. Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines. 2003;2(3):353–68.

    Article  CAS  PubMed  Google Scholar 

  72. Amato RJ. Vaccine therapy for renal cell carcinoma. Rev Urol. 2003;5(2):65–71.

    PubMed  PubMed Central  Google Scholar 

  73. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci USA. 1989;86:10024–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. NIH CAR T-Cell Therapy Approved for Some Children and Young Adults with Leukemia (2017) Available online at: https://www.cancer.gov/news-events/cancer-currents-blog/2017/tisagenlecleucel-fda-childhood-leukemia Accessed 19 Nov 2023

  75. Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, et al. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnol. 2024;22(1):61.

    Article  Google Scholar 

  76. Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, et al. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol. 2023;13:1211262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature. 2023;619:707–15.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Saleh R, Elkord E. Acquired resistance to cancer immunotherapy: role of tumor-mediated immunosuppression. Semin Cancer Biol. 2020;65:13–27.

    Article  CAS  PubMed  Google Scholar 

  79. Yang L, Li A, Lei Q, Zhang Y. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment. J Hematol Oncol. 2019;12(1):125.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol. 2019;16(6):356–71.

    Article  CAS  PubMed  Google Scholar 

  81. Mazzarella L, Duso BA, Trapani D, Belli C, D’Amico P, Ferraro E, et al. The evolving landscape of ‘next-generation’ immune checkpoint inhibitors: a review. Eur J Cancer. 2019;117:14–31.

    Article  CAS  PubMed  Google Scholar 

  82. Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGF beta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Nil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RajLaxmi Sarangi.

Ethics declarations

Conflict of interest

The authors that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarangi, R., Mishra, S. & Mahapatra, S. Cancer Vaccines: A Novel Revolutionized Approach to Cancer Therapy. Ind J Clin Biochem (2024). https://doi.org/10.1007/s12291-024-01201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-024-01201-3

Keywords

Navigation