Skip to main content

Advertisement

Log in

Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a complex disorder characterized by elevated androgen levels, menstrual irregularities, and polycystic morphology of the ovaries. Affecting 6–10% of women in childbearing age, PCOS is a leading cause of infertility worldwide. In recent years, there has been a growing acknowledgment of the involvement of adenosine monophosphate-activated protein kinase (AMPK) in the development of polycystic ovary syndrome (PCOS). The expression of AMPK is diminished in polycystic ovaries, and when AMPK is silenced in human granulosa cells, there is a rise in the expression of steroidogenic enzymes, resulting in increased production of estradiol and progesterone. Additionally, in mouse models, the inhibiting AMPK intensifies the polycystic appearance of ovaries and impairs the process of ovulation. Moreover, it has been shown that AMPK activators like metformin and resveratrol ameliorate PCOS associated signs and symptoms in experimental and clinical studies. These findings, collectively, indicate the key role of AMPK in the pathogenesis of PCOS. Understanding the role of AMPK in PCOS will offer rewarding information on details of PCOS pathogenesis and will provide novel more specific therapeutic approaches. The present review summarizes the latest findings regarding the role of AMPK in PCOS obtained in experimental and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.

    Article  PubMed  Google Scholar 

  2. Bulsara J, Patel P, Soni A, Acharya S. A review: brief insight into polycystic ovarian syndrome. Endocr Metab Sci. 2021;3:100085.

    Article  CAS  Google Scholar 

  3. McCartney CR, Marshall JC. Polycystic ovary syndrome. N Engl J Med. 2016;375(1):54–64.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chopra I, Li H, Wang H, Webster K. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55(3):783–94.

    Article  CAS  PubMed  Google Scholar 

  6. Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245-e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bachanek M, Abdalla N, Cendrowski K, Sawicki W. Value of ultrasonography in the diagnosis of polycystic ovary syndrome–literature review. J Ultrasonogr. 2015;15(63):410.

    Article  Google Scholar 

  8. Taher MG, Mohammed MR, Al-Mahdawi MAS, Halaf NKA, Jalil AT, Alsandook T (2023) The role of protein kinases in diabetic neuropathic pain: an update review. J Diabetes Metab Disord 1-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley WF. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metabol. 1988;66(1):165–72.

    Article  CAS  Google Scholar 

  10. Cardone VS. GnRH antagonists for treatment of polycystic ovarian syndrome. Fertil Steril. 2003;80:25–31.

    Article  Google Scholar 

  11. Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab. 2000;85(11):4047–52.

    CAS  PubMed  Google Scholar 

  12. Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol. 2018;16(1):1–13.

    Article  Google Scholar 

  13. Silva MS, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome. EBioMedicine. 2019;44:582–96.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berg T, Silveira MA, Moenter SM. Prepubertal development of GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons and postsynaptic response are altered by prenatal androgenization. J Neurosci. 2018;38(9):2283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Catteau-Jonard S, Dewailly D. Pathophysiology of polycystic ovary syndrome: the role of hyperandrogenism. Polycystic Ovary Syndr. 2013;40:22–7.

    Article  CAS  Google Scholar 

  16. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller WL. Steroidogenic acute regulatory protein (StAR) a novel mitochondrial cholesterol transporter. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids. 2007;1771(6):663–76.

    CAS  Google Scholar 

  18. Rasmussen MK, Ekstrand B, Zamaratskaia G. Regulation of 3β-Hydroxysteroid dehydrogenase/∆5-∆4 isomerase: a review. Int J Mol Sci. 2013;14(9):17926–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, et al. Androgen receptor in the ovary theca cells plays a critical role in androgen-induced reproductive dysfunction. Endocrinology. 2017;158(1):98–108.

    CAS  PubMed  Google Scholar 

  20. Rashtchizadeh N, Argani H, Ghorbanihaghjo A, Sanajou D, Hosseini V, Dastmalchi S, et al. AMPK: a promising molecular target for combating cisplatin toxicities. Biochem Pharmacol. 2019;163:94–100.

    Article  CAS  PubMed  Google Scholar 

  21. Seza E, Güderer I, Ermis Ç, Banerjee S. PRKAA1 (protein kinase AMP-activated catalytic subunit alpha 1). Atlas Genet Cytogenet Oncol Haematol. 2019;23(5).

  22. Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41.

    Article  CAS  PubMed  Google Scholar 

  23. Boudeau J, Sapkota G, Alessi DR. LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003;546(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  24. Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabol. 2005;2(1):21–33.

    Article  CAS  Google Scholar 

  25. An H, Wang Y, Qin C, Li M, Maheshwari A, He L. The importance of the AMPK gamma 1 subunit in metformin suppression of liver glucose production. Sci Rep. 2020;10(1):1–10.

    Article  Google Scholar 

  26. Fujiwara Y, Kawaguchi Y, Fujimoto T, Kanayama N, Magari M, Tokumitsu H. Differential AMP-activated protein kinase (AMPK) recognition mechanism of Ca2+/calmodulin-dependent protein kinase kinase isoforms. J Biol Chem. 2016;291(26):13802–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joseph BK, Liu H-Y, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, et al. Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J Biol Chem. 2015;290(17):10588–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol. 2020;11:951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguilar-Recarte D, Barroso E, Gumà A, Pizarro-Delgado J, Peña L, Ruart M, et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 2021;36(6):109501.

    Article  CAS  PubMed  Google Scholar 

  30. Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006;12(7):324–32.

    Article  CAS  PubMed  Google Scholar 

  31. Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metabol. 2009;94(1):157–63.

    Article  CAS  Google Scholar 

  32. Moret M, Stettler R, Rodieux F, Gaillard RC, Waeber G, Wirthner D, et al. Insulin modulation of luteinizing hormone secretion in normal female volunteers and lean polycystic ovary syndrome patients. Neuroendocrinology. 2009;89(2):131–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tosi F, Negri C, Perrone F, Dorizzi R, Castello R, Bonora E, et al. Hyperinsulinemia amplifies GnRH agonist stimulated ovarian steroid secretion in women with polycystic ovary syndrome. J Clin Endocrinol. 2012;97(5):1712–9.

    Article  CAS  Google Scholar 

  34. Vlavcheski F, Den Hartogh DJ, Giacca A, Tsiani E. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation. Nutrients. 2020;12(4):914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou Y-J, Xu N, Zhang X-C, Zhu Y-Y, Liu S-W, Chang Y-N. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69(20):5618–27.

    Article  CAS  PubMed  Google Scholar 

  36. Guo S, Wang G, Yang Z. Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. J Recept Signal Transd. 2021;41(1):85–92.

    Article  Google Scholar 

  37. Zhang Z, Zhao H, Wang A. Oleuropein alleviates gestational diabetes mellitus by activating AMPK signaling. Endocr Connections. 2021;10(1):45–53.

    Article  CAS  Google Scholar 

  38. Zheng S-l, Li Z-Y, Song J, Liu J-M, Miao C-Y. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin. 2016;37(5):571–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung TW, Lee SH, Kim H-C, Bang JS, AM AE-A, Hacımüftüoğlu A, et al. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp Mol Med. 2018;50(9):1–11.

    Article  PubMed  Google Scholar 

  40. Zhu Y, Su Y, Zhang J, Zhang Y, Li Y, Han Y, et al. Astragaloside IV alleviates liver injury in type 2 diabetes due to promotion of AMPK/mTOR–mediated autophagy. Mol Med Rep. 2021;23(6):1–12.

    Article  Google Scholar 

  41. Azhary JM, Harada M, Takahashi N, Nose E, Kunitomi C, Koike H, et al. Endoplasmic reticulum stress activated by androgen enhances apoptosis of granulosa cells via induction of death receptor 5 in PCOS. Endocrinology. 2019;160(1):119–32.

    Article  CAS  PubMed  Google Scholar 

  42. Chun S. Relationship between early follicular serum estrone level and other hormonal or ultrasonographic parameters in women with polycystic ovary syndrome. Gynecol Endocrinol. 2020;36(2):143–7.

    Article  CAS  PubMed  Google Scholar 

  43. Jin J, Ma Y, Tong X, Yang W, Dai Y, Pan Y, et al. Metformin inhibits testosterone-induced endoplasmic reticulum stress in ovarian granulosa cells via inactivation of p38 MAPK. Hum Reprod. 2020;35(5):1145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li X, Qi J, Zhu Q, He Y, Wang Y, Lu Y, et al. The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol. 2019;35(8):669–72.

    Article  CAS  PubMed  Google Scholar 

  45. Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH, Fauser BC. Anti-mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab. 2004;89(1):318–23.

    Article  CAS  PubMed  Google Scholar 

  46. Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S, et al. Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab. 2003;88(12):5957–62.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Wang SF, Zheng JD, Zhao CB, Zhang YN, Liu LL, et al. Effects of testosterone on the expression levels of AMH, VEGF and HIF–1α in mouse granulosa cells. Exp Ther Med. 2016;12(2):883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pierre A, Taieb J, Giton F, Grynberg M, Touleimat S, El Hachem H, et al. Dysregulation of the anti-Müllerian hormone system by steroids in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(11):3970–8.

    Article  PubMed  Google Scholar 

  49. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, et al. Anti-mullerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142(11):4891–9.

    Article  CAS  PubMed  Google Scholar 

  50. Gambineri A, Patton L, Vaccina A, Cacciari M, Morselli-Labate AM, Cavazza C, et al. Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J Clin Endocrinol Metab. 2006;91(10):3970–80.

    Article  CAS  PubMed  Google Scholar 

  51. Ibáñez L, de Zegher F. Low-dose flutamide-metformin therapy for hyperinsulinemic hyperandrogenism in non-obese adolescents and women. Hum Reprod Update. 2006;12(3):243–52.

    Article  PubMed  Google Scholar 

  52. González F, Nair KS, Daniels JK, Basal E, Schimke JM, Blair HE. Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 2012;97(8):2836–43.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Troncoso MF, Pavez M, Wilson C, Lagos D, Duran J, Ramos S, et al. Testosterone activates glucose metabolism through AMPK and androgen signaling in cardiomyocyte hypertrophy. Biol Res. 2021;54(1):1–16.

    Article  Google Scholar 

  54. Mitsuhashi K, Senmaru T, Fukuda T, Yamazaki M, Shinomiya K, Ueno M, et al. Testosterone stimulates glucose uptake and GLUT4 translocation through LKB1/AMPK signaling in 3T3-L1 adipocytes. Endocrine. 2016;51(1):174–84.

    Article  CAS  PubMed  Google Scholar 

  55. Igreja S, Nettleship JE, Jones RD, Channer KS, Jones TH, Korbonits M, editors. Low testosterone and androgen receptor insensitivity results in decreased AMP-activated protein kinase activity (AMPK) in the liver in the testicular feminised (tfm) mouse. Endocrine Abstracts; 2010.

  56. Kayampilly PP, Menon K. AMPK activation by dihydrotestosterone reduces FSH-stimulated cell proliferation in rat granulosa cells by inhibiting ERK signaling pathway. Endocrinology. 2012;153(6):2831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tao X, Chen L, Cai L, Ge S, Deng X. Regulatory effects of the AMPKα-SIRT1 molecular pathway on insulin resistance in PCOS mice: an in vitro and in vivo study. Biochem Biophys Res Commun. 2017;494(3–4):615–20.

    Article  CAS  PubMed  Google Scholar 

  58. Lim CT, Kola B, Korbonits M. AMPK as a mediator of hormonal signalling. J Mol Endocrinol. 2010;44(2):87.

    Article  CAS  PubMed  Google Scholar 

  59. Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of metformin with pregnancy outcomes in women with polycystic ovarian syndrome undergoing in vitro fertilization: a systematic review and meta-analysis. JAMA Netw open. 2020;3(8):e2011995–e.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tosca L, Chabrolle C, Uzbekova S, Dupont J. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′ monophosphate-activated protein kinase (AMPK). Biol Reprod. 2007;76(3):368–78.

    Article  CAS  PubMed  Google Scholar 

  61. Reverchon M, Cornuau M, Cloix L, Rame C, Guerif F, Royere D, et al. Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mol Hum Reprod. 2013;19(5):313–26.

    Article  CAS  PubMed  Google Scholar 

  62. Tosca L, Solnais P, Ferré P, Foufelle F, Dupont J. Metformin-induced stimulation of adenosine 5′ monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat granulosa cells. Biol Reprod. 2006;75(3):342–51.

    Article  CAS  PubMed  Google Scholar 

  63. Kayampilly PP, Menon K. Follicle-stimulating hormone inhibits adenosine 5′-monophosphate-activated protein kinase activation and promotes cell proliferation of primary granulosa cells in culture through an akt-dependent pathway. Endocrinology. 2009;150(2):929–35.

    Article  CAS  PubMed  Google Scholar 

  64. Kayampilly PP, Wanamaker BL, Stewart JA, Wagner CL, Menon K. Stimulatory effect of insulin on 5α-reductase type 1 (SRD5A1) expression through an akt-dependent pathway in ovarian granulosa cells. Endocrinology. 2010;151(10):5030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kayampilly PP, Menon K. Inhibition of extracellular signal-regulated protein kinase-2 phosphorylation by dihydrotestosterone reduces follicle-stimulating hormone-mediated cyclin D2 messenger ribonucleic acid expression in rat granulosa cells. Endocrinology. 2004;145(4):1786–93.

    Article  CAS  PubMed  Google Scholar 

  66. Pradeep P, Li X, Peegel H, Menon K. Dihydrotestosterone inhibits granulosa cell proliferation by decreasing the cyclin D2 mRNA expression and cell cycle arrest at G1 phase. Endocrinology. 2002;143(8):2930–5.

    Article  CAS  PubMed  Google Scholar 

  67. Kai Y, Kawano Y, Okamoto M, Nasu K, Narahara H. The effects of metformin on the activation of amp-activated protein kinase (AMPK) in human granulosa cells. Fertil Steril. 2013;100(3):361.

    Article  Google Scholar 

  68. Kai Y, Kawano Y, Yamamoto H, Narahara H. A possible role for AMP-activated protein kinase activated by metformin and AICAR in human granulosa cells. Reprod Biol Endocrinol. 2015;13(1):1–8.

    Article  CAS  Google Scholar 

  69. Wang T, Jiang H, Cao S, Chen Q, Cui M, Wang Z, et al. Baicalin and its metabolites suppresses gluconeogenesis through activation of AMPK or AKT in insulin resistant HepG-2 cells. Eur J Med Chem. 2017;141:92–100.

    Article  CAS  PubMed  Google Scholar 

  70. Wang W, Zheng J, Cui N, Jiang L, Zhou H, Zhang D, et al. Baicalin ameliorates polycystic ovary syndrome through AMP-activated protein kinase. J Ovar Res. 2019;12(1):1–12.

    Google Scholar 

  71. El-Hayek S, Clarke HJ. Control of oocyte growth and development by intercellular communication within the follicular niche. Mol Mech Cell Differ Gonad Dev. 2016;191–224.

  72. Ashraf S, Nabi M, Rashid F, Amin S. Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: a review. Egypt J Med Hum Genet. 2019;20(1):1–10.

    Article  Google Scholar 

  73. Qi B, Shi C, Meng J, Xu S, Liu J. Resveratrol alleviates ethanol-induced neuroinflammation in vivo and in vitro: involvement of TLR2-MyD88-NF-κB pathway. Int J Biochem Cell Biol. 2018;103:56–64.

    Article  CAS  PubMed  Google Scholar 

  74. Rencber S, Ozbek S, Eraldemir C, Sezer Z, Kum T, Ceylan S et al. Effect of resveratrol and metformin on ovarian reserve and ultrastructure in PCOS: an experimental study. J ovarian Res. 2018;11.

  75. Yarmolinskaya M, Bulgakova O, Abashova E, Borodina V, Tral T. The effectiveness of resveratrol in treatment of PCOS on the basis of experimental model in rats. Gynecol Endocrinol. 2021;37(sup1):54–7.

    Article  CAS  PubMed  Google Scholar 

  76. Al‐Hetty HRAK, Ismaeel GL, Mohammad WT, Toama MA, Kandeel M, Saleh MM, Turki Jalil A (2022) SRF/MRTF‐A and liver cirrhosis: Pathologic associations. J Dig Dis 23(11):614-619.

    Article  CAS  PubMed  Google Scholar 

  77. Selimoglu H, Duran C, Kiyici S, Ersoy C, Guclu M, Ozkaya G, et al. The effect of vitamin D replacement therapy on insulin resistance and androgen levels in women with polycystic ovary syndrome. J Endocrinol Investig. 2010;33(4):234–8.

    Article  CAS  Google Scholar 

  78. Bakhshalizadeh S, Amidi F, Shirazi R, Shabani Nashtaei M. Vitamin D3 regulates steroidogenesis in granulosa cells through AMP-activated protein kinase (AMPK) activation in a mouse model of polycystic ovary syndrome. Cell Biochem Funct. 2018;36(4):183–93.

    Article  CAS  PubMed  Google Scholar 

  79. Froment P, Plotton I, Giulivi C, Fabre S, Khoueiry R, Mourad NI et al. At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism. Hum Reprod. 2022.

  80. Xing Y, Liu YX, Liu X, Wang SL, Li P, Lin XH, et al. Effects of Gui Zhu Yi Kun formula on the P53/AMPK pathway of autophagy in granulosa cells of rats with polycystic ovary syndrome. Exp Ther Med. 2017;13(6):3567–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wen M, Chen W, Zhou Q, Dou X. Astragaloside IV regulates autophagy-mediated proliferation and apoptosis in a rat model of PCOS by activating the PPAR γ pathway. Iran J Basic Med Sci. 2022;25(7).

  82. Ji R, Jia F-Y, Chen X, Wang Z-H, Jin W-y, Yang J. Salidroside alleviates oxidative stress and apoptosis via AMPK/Nrf2 pathway in DHT-induced human granulosa cell line KGN. Arch Biochem Biophys. 2022;715:109094.

    Article  CAS  PubMed  Google Scholar 

  83. Guo R, Zheng H, Li Q, Qiu X, Zhang J, Cheng Z. Melatonin alleviates insulin resistance through the PI3K/AKT signaling pathway in ovary granulosa cells of polycystic ovary syndrome. Reprod Biol. 2022;22(1):100594.

    Article  CAS  PubMed  Google Scholar 

  84. Yousif H, Alzamily A, Alsalman I. Interleukin-4 Enhances the Production of Anti-Inflammatory Macrophages That Inhibits the Growth of Osteoclasts to Improve Knee Functionality. J Biomed Biochem. 2022;1(3):50–6. https://doi.org/10.57238/jbb.2022.20104.

    Article  Google Scholar 

  85. Koike H, Harada M, Kusamoto A, Kunitomi C, Xu Z, Tanaka T et al. Notch Signaling Induced by endoplasmic reticulum stress regulates Cumulus-Oocyte complex expansion in polycystic ovary syndrome. Biomolecules. 2022;12(8).

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abduldaheem Turki Jalil.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to publish

This article does not contain any studies with human participants or animals performed by any of the authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalil, A.T., Zair, M.A., Hanthal, Z.R. et al. Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Ind J Clin Biochem (2023). https://doi.org/10.1007/s12291-023-01139-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12291-023-01139-y

Keywords

Navigation