Skip to main content

Advertisement

Log in

Biochemical Significance of miR-155 and miR-375 as Diagnostic Biomarkers and Their Correlation with the NF-κβ/TNF-α Axis in Breast Cancer

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Serum microRNAs (miRs) have recently been proposed as potential cancer biomarkers for early detection. Thyroid hormones play a crucial role in human health, and their alterations are linked to a range of diseases, such as breast cancer. The relationship between NF-κβ, TNF-α, and non-coding RNAs is an urgent need for clinical trials. This study aimed to investigate serum expression folds of miR-155 and miR-375 and their correlations with NF-κβ and TNF-α in breast cancer patients. The current study was conducted on 183 unrelated female participants. Serum levels of free T3 and T4, as well as expression folds of miR-155 and miR-375, were significantly higher in patients with fibroadenoma and breast cancer, despite TSH being significantly lower. Additionally, the signaling of TNF-alpha and NF-κβ were found to be significantly upregulated in the serum of patients with breast cancer. Up-regulation of miR-155 and miR-375 expression may be diagnostic biomarkers of breast cancer, pointing to the role of NF-κβ and TNF-α expression in miR-155 and miR-375 expression as therapeutic targets of breast cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Abdelaziz AH, Shawki MA, Shaaban AM, Albarouki SK, Rachid AM, Alsalhani OM, et al. Breast cancer awareness among Egyptian women and the impact of caring for patients with breast cancer on family caregivers’ knowledge and behaviour. Res Oncol. 2021;17(1):1–8.

    Google Scholar 

  3. Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. GENES DIS. 2018;5(2):77–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020;9(2):276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9:402.

    Article  CAS  Google Scholar 

  6. Ratti M, Lampis A, Ghidini M, Salati M, Mirchev MB, Valeri N, et al. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: first steps from bench to bedside. Target Oncol. 2020;15(3):261–78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Otmani K, Lewalle P. Tumor suppressor miRNA in cancer cells and the tumor microenvironment: mechanism of deregulation and clinical implications. Front Oncol. 2021;11: 708765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng Y, Croce C. The role of MicroRNAs in human cancer. Sig Transduct Target Ther. 2016;1:15004.

    Article  Google Scholar 

  9. Khalil EH, Shaker OG, Hasona NA. Impact of rs2107425 polymorphism and expression of lncH19 and miR-200a on the susceptibility of colorectal cancer. Ind J Clin Biochem. 2022. https://doi.org/10.1007/s12291-022-01052-w.

    Article  Google Scholar 

  10. Abdel Hameed NA, Shaker OG, Hasona NA. Significance of LINC00641 and miR-378 as a potential biomarker for colorectal cancer. Comp Clin Pathol. 2022. https://doi.org/10.1007/s00580-022-03384-8.

    Article  Google Scholar 

  11. Gambhir S, Vyas D, Hollis M, Aekka A, Vyas A. Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol. 2015;21(11):3174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 2020;19:57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1(4): a000034.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019;51(1):27–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;22(5):2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. Med Comm. 2021;2:618–53.

    CAS  Google Scholar 

  17. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lourbopoulos AI, Mourouzis IS, Trikas AG, Tseti IK, Pantos CI. Effects of thyroid hormone on tissue hypoxia: relevance to sepsis therapy. J Clin Med. 2021;10:5855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang PS, Chang CC, Wang CS, Lin KH. Functional roles of non-coding RNAs regulated by thyroid hormones in liver cancer. Biomed J. 2021;44:272–84.

    Article  CAS  PubMed  Google Scholar 

  20. Cicatiello AG, Di Girolamo D, Dentice M. Metabolic effects of the intracellular regulation of thyroid hormone: old players. New Concepts Front Endocrinol. 2018;9:474.

    Article  Google Scholar 

  21. Krashin E, Piekiełko-Witkowska A, Ellis M, Ashur-Fabian O. Thyroid hormones and cancer: a comprehensive review of preclinical and clinical studies. Front Endocrinol. 2019;10:59.

    Article  Google Scholar 

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego Calif). 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  23. Harlow E, Lane D. Using antibodies: a laboratory manual. New York, NY: Cold Spring Harbor Laboratory Press; 1999.

    Google Scholar 

  24. Butt Z, Haider SF, Arif S, Khan MR, Ashfaq U, Shahbaz U, et al. Breast cancer risk factors: a comparison between pre-menopausal and post-menopausal women. J Pak Med Assoc. 2012;62:120–4.

    PubMed  Google Scholar 

  25. Li Z, Wei H, Li S, Wu P, Mao X. The role of progesterone receptors in breast cancer. Drug Des Devel Ther. 2022;16:305–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong L, Lu J, Zhao B, Wang W, Zhao Y. Review of the possible association between thyroid and breast carcinoma. World J Surg Oncol. 2018;16(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ditsch N, Liebhardt S, Von Koch F, Lenhard M, Vogeser M, Spitzweg C, et al. Thyroid function in breast cancer patients. Anticancer Res. 2010;30:1713–7.

    CAS  PubMed  Google Scholar 

  28. Rasool M, Naseer MI, Zaigham K, Malik A, Riaz N, Alam R, et al. Comparative study of alterations in tri-iodothyronine (T3) and thyroxine (T4) hormone levels in breast and ovarian cancer. Pak J Med Sci. 2014;30(6):1356–60.

    PubMed  PubMed Central  Google Scholar 

  29. Sogaard M, Farkas DK, Ehrenstein V, Otto J, Jørgensen L, Dekkers OM, et al. Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol. 2016;174(4):409–14.

    Article  CAS  PubMed  Google Scholar 

  30. Anwar SL, Tanjung DS, Fitria MS, Kartika AI, Sari DNI, Rakhmina D, Wardana T, Astuti I, Haryana SM, Aryandono T. Dynamic changes of circulating Mir-155 expression and the potential application as a non-invasive biomarker in breast cancer. Asian Pac J Cancer Prev. 2020;21(2):491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khalighfard S, Alizadeh AM, Irani S, Omranipour R. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep. 2018;8(1):17981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sochor M, Basova P, Pesta M, Dusilkova N, Bartos J, Burda P, et al. Oncogenic microRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum. BMC Cancer. 2014;14:448.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Filippova EA, Pronina IV, Burdennyy AM, Kazubskaya TP, Loginov VI, Braga EA. The profile of microRNA expression and a group of genes in breast cancer: relationship to tumor progression and immunohistochemical status. Russ J Genet. 2021;57(9):1106–14.

    Article  CAS  Google Scholar 

  34. Tang W, Li GS, Li JD, Pan WY, Shi Q, Xiong DD, et al. The role of upregulated miR-375 expression in breast cancer: an in vitro and in silico study. Pathol Res Pract. 2020;216(1): 152754.

    Article  CAS  PubMed  Google Scholar 

  35. Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Front Immunol. 2021;12: 669382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mahesh G, Biswas R. MicroRNA-155: a master regulator of inflammation. J Interferon Cytokine Res. 2019;19(6):321–30.

    Article  Google Scholar 

  37. Soleimanpour E, Babaei E, Hosseinpour-Feizi MA, Montazeri V. Circulating miR-21 and miR-155 as potential noninvasive biomarkers in Iranian Azeri patients with breast carcinoma. J Can Res Ther. 2019;15:1092–7.

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funding for the research received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil A. Hasona.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

Our study was conducted in compliance with the Declaration of Helsinki, and the Research Ethical Committee, Faculty of Medicine, University of Beni-Suef, Egypt provided its approval (FMBSUREC/10042022)".

Informed Consent

All study participants provided their informed consent permission for participation in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Samed, S.A., Hozyen, W.G., Shaaban, S.M. et al. Biochemical Significance of miR-155 and miR-375 as Diagnostic Biomarkers and Their Correlation with the NF-κβ/TNF-α Axis in Breast Cancer. Ind J Clin Biochem 39, 226–232 (2024). https://doi.org/10.1007/s12291-022-01101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-022-01101-4

Keywords

Navigation