Skip to main content

Advertisement

Log in

Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Breast cancer is recognized for its different clinical behaviors and patient outcomes, regardless of common histopathological features at diagnosis. The heterogeneity and dynamics of breast cancer undergoing clonal evolution produces cells with distinct degrees of drug resistance and metastatic potential. Presently, single cell analysis have made outstanding advancements, overshadowing the hurdles of heterogeneity linked with vast populations. The speedy progression in sequencing analysis now allow unbiased, high-output and high-resolution elucidation of the heterogeneity from individual cell within a population. Classical therapeutics strategies for individual patients are governed by the presence and absence of expression pattern of the estrogen and progesterone receptors and human epidermal growth factor receptor 2. However, such tactics for clinical classification have fruitfulness in selection of targeted therapies, short-term patient responses but unable to predict the long-term survival. In any phenotypic alterations, like breast cancer disease, molecular signature have proven its implication, as we aware that individual cell’s state is regulated at diverse levels, such as DNA, RNA and protein, by multifaceted interplay of intrinsic biomolecules pathways existing in the organism and extrinsic stimuli such as ambient environment. Thus for complete understanding, complete profiling of single cell requires a synchronous investigations from different levels (multi-omics) to avoid incomplete information produced from single cell. In this article, initially we briefed on novel updates of various methods available to explore omics and then we finally pinpointed on various omics (i.e. genomics, transcriptomics, epigenomics, proteomics and metabolomics) data and few special aspects of circulating tumor cells, disseminated tumor cells and cancer stem cells, so far available from various studies that can be used for better management of breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  2. Raina V, Tyagi BB, Manoharan N. Two year report of the population based cancer registries, 2004–2005. Incidence and distribution of cancer. New Delhi: National Cancer Registry Programme, Indian Council of Medical Research; 2009. p. 63–5. https://canceratlasindia.org.

  3. Dwivedi S, Chikara G, Samdariya S, Pareek P, Sharma P, Khattri S, et al. Molecular biotechnology for diagnostics. In: Khan MS, Khan IA, Barh D, editors. Applied molecular biotechnology: the next generation of genetic engineering. New Delhi: CRC Press, Taylor & Francis Group, Inc; 2016. p. 303–33.

    Chapter  Google Scholar 

  4. Cai L, Dalal CK, Elowitz MB. Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature. 2008;455:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Polyak K. Breast cancer: origins and evolution. J Clin Investig. 2007;117:3155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dwivedi S, Sharma P. Prospects of molecular biotechnology in diagnostics: step towards precision medicine. Indian J Clin Biochem. 2017;32(2):121–3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dwivedi S, Purohit P, Misra R, Pareek P, Goel A, Khattri S, et al. Diseases and molecular diagnostics: a step closer to precision medicine. Indian J Clin Biochem. 2017;32(4):374–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dwivedi S, Shukla KK, Gupta G, Sharma P. Non-invasive biomarker in prostate carcinoma: a novel approach. Indian J Clin Biochem. 2013;28(2):107–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dwivedi S, Goel A, Mandhani A, Khattri S, Sharma P, Misra S, et al. Functional genetic variability at promoters of pro-(IL-18) and anti-(IL-10) inflammatory affects their mRNA expression and survival in prostate carcinoma patients: five year follow-up study. Prostate. 2015;75(15):1737–46.

    Article  CAS  PubMed  Google Scholar 

  10. Dwivedi S, Goel A, Khattri S, Mandhani A, Sharma P, Misra S, et al. Genetic variability at promoters of IL-18 pro- and IL-10 anti-inflammatory gene affects susceptibility and their circulating serum levels: an explorative study of prostate cancer patients in North Indian populations. Cytokine. 2015;74(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  11. Dwivedi S, Goel A, Khattri S, Mandhani A, Sharma P, Pant KK. Tobacco exposure by various modes may alter pro-inflammatory (IL-12) and anti-inflammatory (IL-10) levels and affects the survival of prostate carcinoma patients: an explorative study in North Indian population. Biomed Res Int. 2014;2014:158530.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sharma P, Dwivedi S. Nutrigenomics and nutrigenetics: new insight in disease prevention and cure. Indian J Clin Biochem. 2017;32(4):371–3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dwivedi S, Shukla S, Goel A, Sharma P, Khattri S, Pant KK. Nutrigenomics in breast cancer. In: Barh D, editor. Omics approaches in breast cancer. New Delhi: Springer; 2014. p. 127–51.

    Google Scholar 

  14. Dwivedi S, Purohit P, Misra R, Pareek P, Vishnoi JR, Sharma P, et al. Methods for isolation of high quality and quantity of RNA and single cell suspension for flow-cytometry from cancer tissue: a comparative analysis. Indian J Clin Biochem. 2017. https://doi.org/10.1007/s12291-017-0719-5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carter NP, Bebb CE, Nordenskjo M, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13:718–25.

    Article  PubMed  Google Scholar 

  16. Paunio T, Reima I, Syvänen A-C. Preimplantation diagnosis by whole-genome amplification, PCR amplification, and solid-phase minisequencing of blastomere DNA. Clin Chem. 1996;42:1382–90.

    CAS  PubMed  Google Scholar 

  17. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci. 2002;99:5261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lasken RS. Single-cell sequencing in its prime. Nat Biotechnol. 2013;31:211–2.

    Article  CAS  PubMed  Google Scholar 

  19. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338:1622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang L, Ma F, Chapman A, Lu S, Xie XS. Single-cell whole-genome amplification and sequencing: methodology and applications. Annu Rev Genom Hum Genet. 2015;16:79–102.

    Article  CAS  Google Scholar 

  21. Chen C, Xing D, Tan L, Li H, Zhou G, Huang L, et al. Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI). Science. 2017;356:189–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsoucas D, Yuan GC. Recent progress in single-cell cancer genomics. Curr Opin Genet Dev. 2017;42:22–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome as-sembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ni X, Zhuo M, Su Z, Duan J, Gao Y, Wang Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer pa-tients. Proc Natl Acad Sci. 2013;110:21083–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Demeulemeester J, Kumar P, Møller EK, Nord S, Wedge DC, Peterson A, et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell se-quencing. Genome Biol. 2016;17:250.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Baslan T, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, et al. Genome-wide copy number analysis of single cells. Nat Protoc. 2012;7:1024–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012;148:886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Janiszewska M, Liu L, Almendro V, Kuang Y, Paweletz C, Sakr RA, et al. In situ single-cell analysis identifies heterogeneity for PIK3 CA mutation and HER2 amplification in HER2-positive breast cancer. Nat Genet. 2015;47:1212–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Spits C, Le Caignec C, De Rycke M, Van Haute L, Van Steirteghem A, Liebaers I, et al. Whole genome multiple displacement amplification from single cells. Nat Protoc. 2006;1:1965–70.

    Article  CAS  PubMed  Google Scholar 

  30. Van Loo P, Voet T. Single cell analysis of cancer genomes. Curr Opin Genet Dev. 2014;24:82–91.

    Article  PubMed  Google Scholar 

  31. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002;99:5261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  33. Guo H, Zhu P, Wu X, Li X, Wen L, Tang F. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 2013;23:2126–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hou Y, Guo H, Cao C, Li X, Hu B, Zhu P, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 2016;26:304–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods. 2014;11:817–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jin W, Tang Q, Wan M, Cui K, Zhang Y, Ren G, et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature. 2015;528:142–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nagano T, Lubling Y, Stevens TJ, Schoenfelder S, Yaffe E, Dean W, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature. 2013;502:59–64.

    Article  CAS  PubMed  Google Scholar 

  38. Widschwendter M, Berger J, Müller HM, Zeimet AG, Marth C. Epigenetic downregulation of the retinoic acid receptor-beta2 gene in breast cancer. J Mammary Gland Biol Neoplasia. 2001;6:193–201.

    Article  CAS  PubMed  Google Scholar 

  39. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777–82.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Guo G, Huss M, Tong GQ, Wang C, Li Sun L, Clarke ND, et al. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell. 2010;18:675–85.

    Article  CAS  PubMed  Google Scholar 

  41. Dalerba P, Kalisky T, Sahoo D, Rajendran PS, Rothenberg ME, Leyrat AA, et al. Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat Biotechnol. 2011;29:1120–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348:aaa6090.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lovatt D, Ruble BK, Lee J, Dueck H, Kim TK, Fisher S, et al. Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods. 2014;11:190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, et al. Highly multiplexed subcellular RNA sequencing in situ. Science. 2014;343:1360–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. TAILORx trial. http://www.cancer.gov/clinicaltrials/digestpage/TAIL.

  46. Batchelor E, Loewer A, Lahav G. The ups and downs of p53: understanding protein dynamics in single cells. Nat Rev Cancer. 2009;9:371–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tang X, Lin C-C, Spasojevic I, Iversen ES, Chi J-T, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res BCR. 2014;16:415. https://doi.org/10.1186/s13058-014-0415-9.

    Article  PubMed  Google Scholar 

  48. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  49. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, et al. Breast cancer classification and prognosis based on gene expression profiles from a populationbased study. Proc Natl Acad Sci USA. 2003;100:10393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101:736–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  54. Mukai H. Treatment strategy for HER2-positive breast cancer. Int J Clin Oncol. 2010;15:335–40.

    Article  CAS  PubMed  Google Scholar 

  55. Carey LA. Breast cancer: HER2ea good addiction. Nat Rev Clin Oncol. 2012;9:196–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wetzels RH, Holland R, van Haelst UJ, Lane EB, Leigh IM, Ramaekers FC. Detection of basement membrane components and basal cell keratin 14 in noninvasive and invasive carcinomas of the breast. Am J Pathol. 1989;134:571–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    Article  CAS  PubMed  Google Scholar 

  58. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dwivedi S, Purohit P, Mittal P, Goel A, Verma R, Khattri S, et al. Genetic engineering: towards gene therapy and molecular medicine. In: Barh D, Azevedo V, editors. Omics technologies and bio-engineering: towards improving quality of life. Cambridge: Academic Press; 2017. p. 507–30.

    Google Scholar 

  60. Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom. 2006;27(7):96.

    Article  Google Scholar 

  61. Lacroix M, Leclercq G. About GATA3, HNF3A, and XBP1, three genes co-expressed with the oestrogen receptor-alpha gene (ESR1) in breast cancer. Mol Cell Endocrinol. 2004;219:1–7.

    Article  CAS  PubMed  Google Scholar 

  62. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.

    Article  CAS  PubMed  Google Scholar 

  63. Bertucci F, Finetti P, Cervera N, Charafe-Jauffret E, Mamessier E, Adélaïde J, et al. Gene expression profiling shows medullary breast cancer is a subgroup of basal breast cancer. Cancer Res. 2006;66:4636–44.

    Article  CAS  PubMed  Google Scholar 

  64. Lacroix M, Leclercq G. Hereditary breast cancer: an update on genotype and phenotype. In: Yao PA, editor. New breast cancer research. New York: Nova Science Publishers; 2006. p. 27–51.

    Google Scholar 

  65. Charafe-Jauffret E, Ginestier C, Monville F. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene. 2006;25:2273–84.

    Article  CAS  PubMed  Google Scholar 

  66. Dwivedi S, Goel A, Sadashiv Verma A, Shukla S, Sharma P, et al. Molecular diagnosis of metastasizing breast cancer based upon liquid biopsy. In: Barh D, editor. Omics approaches in breast cancer. New Delhi: Springer; 2014. p. 425–59.

    Google Scholar 

  67. Dwivedi S, Purohit P, Misra R, Pareek P, Goel A, Khattri S, et al. Diseases and molecular diagnostics: a step closer to precision medicine. Indian J Clin Biochem. 2017;32:374–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hodgkinson CL, Morrow CJ, Li Y, Metcalf RL, Rothwell DG, Trapani F, et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat Med. 2014;20(8):897–903.

    Article  CAS  PubMed  Google Scholar 

  70. Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 2013;8:735–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM, Williamson CA, et al. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr Biol (Camb). 2014;6:388–98.

    Article  CAS  Google Scholar 

  72. Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity. Trends Cancer. 2018;4(4):264–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wicha MS, Liu S, Dontu G. Cancer stem cells: an old idea a paradigm shift. Cancer Res. 2006;66:1883–90.

    Article  CAS  PubMed  Google Scholar 

  74. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dwivedi S, Sharma P. Stem cell biology: a new hope in regenerations and replenishments therapy. Ind J Clin Biochem. 2018;33(4):368–70. https://doi.org/10.1007/s12291-018-0792-4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Science and Engineering Research Board (Grant No. PDF/2015/000322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Sharma.

Ethics declarations

Conflict of interest

All Authors declare that there is no conflict of interest.

Ethical Approval

This article is review article, so does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, S., Purohit, P., Misra, R. et al. Single Cell Omics of Breast Cancer: An Update on Characterization and Diagnosis. Ind J Clin Biochem 34, 3–18 (2019). https://doi.org/10.1007/s12291-019-0811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-019-0811-0

Keywords

Navigation