Skip to main content

Advertisement

Log in

Hyperhomocysteinemia, MMPs and Cochlear Function: A Short Review

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Hyperhomocysteinemia (HHCY) has been demonstrated to affect cochlear microvasculature as well as cochlear epithelial cells directly, with a resultant alteration of the expression of matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). Hence, ascertaining the optimum concentration of MMPs and TIMPs in the cochlea could help to inhibit hearing loss due to HHCY by the administration of appropriate MMP inhibitors, Since infections/inflammations as well as ototoxic antibiotics have a similar mechanism of otic pathology, the cochlear damage they cause could also be similarly prevented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. du Vigneaud V. Trail of research in sulfur chemistry and metabolism, and related fields. Ithaca: N.Y. Cornell University Press; 1952.

    Google Scholar 

  2. Bhargava S, Parakh R, Manocha A, Ali A, Srivastava LM. Prevalence of hyperhomocysteinemia in vascular disease: comparative study of thrombotic venous disease vis-à-vis occlusive arterial disease. Vascular. 2007;15(3):149–53.

    Article  PubMed  Google Scholar 

  3. McCully KS. Homocysteine theory of arteriosclerosis: development and current status. Atheroscler Rev. 1983;11:157–246.

    CAS  Google Scholar 

  4. Tyagi N, Gillespie W, Vacek JC, Sen U, Tyagi SC, Lominadze D. Activation of GABA-A receptor ameliorates homocysteine-induced activation of MMP-9 activation by ERK pathway. J Cell Physiol. 2009;220(1):257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA. 1962;48:1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Page-McCaw A, Ewald AJ, Werb Z. Matrix, metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol. 2007;8:221–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rowe RJ, Weiss SJ. Breaching the basement membrane: who, when and how? Trends Cell Biol. 2008;18:560–74.

    Article  CAS  PubMed  Google Scholar 

  8. Fanjul-Fernandez M, Folgueras AR, Cabrera S, Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta. 2010;1803:3–19.

    Article  CAS  PubMed  Google Scholar 

  9. Overall CM, Kleifield O. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets for cancer therapy. Nat Rev Cancer. 2006;6:227–39.

    Article  CAS  PubMed  Google Scholar 

  10. Apte SS, Olsen BR, Murphy G. Gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem. 1995;270:14313–8.

    Article  CAS  PubMed  Google Scholar 

  11. Chintala SK. The emerging role of proteases in retinal ganglion cell death. Exp Eye Res. 2006;82:5–12.

    Article  CAS  PubMed  Google Scholar 

  12. Massova I, Kotra LP, Fridman R, Mobashery S. Matrix metalloproteinases: structures, evolution and diversification. FASEB J. 1998;12:1075–95.

    CAS  PubMed  Google Scholar 

  13. Chicoine E, Esteve PO, Robledo O, Van Themsche C, Potworowski EF, St-Pierre Y. Evidence for the role of promoter methylation in the regulation of MMP-9 gene expression. Biochem Biophys Res Commun. 2002;297:765–72.

    Article  CAS  PubMed  Google Scholar 

  14. Shukeir N, Pakneshan P, Chen G, Szef M, Rabbani SA. Alteration of the methylation status of the tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res. 2006;66:9202–10.

    Article  CAS  PubMed  Google Scholar 

  15. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477(1–2):267–83.

    Article  CAS  PubMed  Google Scholar 

  16. Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004;3(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gok U, Halifeoglu I, Canatan H, Yildiz M, Gursu MF, Gur B. Comparative analysis of serum homocysteine, folic acid and vitamin B12 levels in patients with noise-induced hearing loss. Auris Nasus Larynx. 2004;31:19–22.

    Article  PubMed  Google Scholar 

  18. Kundu S, Tyagi N, Sen U, Tyagi SC. Matrix imbalance by inducing expression of metalloproteinase and oxidative stress in cochlea of hyperhomocysteinemic mice. Mol Cell Biochem. 2009;332(1–2):215–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Setz C, Brand Y, Radojevic V, Hanusek C, Mullen PJ, Levano S, et al. Matrix metalloproteinases 2 and 9 in the cochlea: expression and activity after aminoglycoside exposition. Neuroscience. 2011;181:28–39.

    Article  CAS  PubMed  Google Scholar 

  20. Thorne PR, Gavin JB, Herdson PB. A quantitative study of the sequence of topographical changes in the organ of Corti following acoustic trauma. Acta Otolaryngol. 1984;97:69–81.

    Article  CAS  PubMed  Google Scholar 

  21. Hu BH, Cai Q, Hu Z, Patel M, Bard J, Jamison J, et al. Metalloproteinases and their associated genes contribute to the functional integrity and noise-induced damage in the cochlear sensory epithelium. J Neurosci. 2012;32(43):14927–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leib SL, Leppert D, Clements J, Tauber MG. Matrix metalloproteinases contribute to brain damage in experimental pneumococcal meningitis. Infect Immun. 2000;68:615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi CH, Jang CH, Cho YB, Jo SY, Kim MY, Park BY. Matrix metalloproteinase inhibitor attenuates cochlear lateral wall damage induced by intratympanic instillation of endotoxin. Int J Ped Otorhinolaryngol. 2012;76:544–8.

    Article  Google Scholar 

  24. Nam S-II, Kwon TK. Dexamethasone inhibits interleukin-1β-induced matrix metalloproteinase-9 expression in cochlear cells. Clin Exp Otorhinolaryngol. 2012;7(3):175–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Bhargava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, S., Bhargava, M.S., Bhargava, E.K. et al. Hyperhomocysteinemia, MMPs and Cochlear Function: A Short Review. Ind J Clin Biochem 31, 148–151 (2016). https://doi.org/10.1007/s12291-015-0505-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-015-0505-1

Keywords

Navigation