Skip to main content
Log in

A review of methods and effects for improving production robustness in industrial micro-deep drawing

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

Deep-drawing is a method in which flat sheets of metal are formed into complex 3-dimensional geometries. Three main types of challenges arise when transitioning from the macro-scale to micro-deep drawing. These can be summarised as: (1) tribological effects, which mainly stem from the relative difference in surface characteristics between the two size scales, (2) material behaviour effects which arise from the increasing heterogeneity of materials that have a decreasing number of grains that are deformed in forming, and (3) dimensional effects which relate to difficulties in handling and inspection of small components at high rates and challenges in manufacturing and monitoring of tool components for use in micro-deep drawing. Various methods or effects can be applied to micro-deep drawing processes to tackle these challenges. This paper reviews research on methods and effects that can be used to improve the robustness in micro-deep drawing processes. Small changes, such as the choice of lubricant and slight changes to the punch geometry are considered, but so are larger changes such as the use of ultrasonic vibration to improve formability and adjustable tooling. The influence of process monitoring and simulation on process robustness is also considered. A summary of methods and effects is drawn at the end to highlight potential space for innovation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Pelz PF, Groche P, Pfetsch ME, Schaeffner M (2021) Mastering Uncertainty in Mechanical Engineering, 1st ed. Springer, [Online]. Available: https://link.springer.com/book/10.1007/978-3-030-78354-9

  2. Bonte MHA, Van Den Boogaard AH, Van Ravenswaaij R (2007) A robust optimisation strategy for metal forming processes, in AIP Conference Proceedings, pp. 493–498. https://doi.org/10.1063/1.2740859

  3. Pawelski O (1992) Ways and limits of the theory of similarity in application to problems of physics and metal forming. J Mater Process Technol 34:19–30. https://doi.org/10.1016/0924-0136(92)90086-8

    Article  Google Scholar 

  4. Geiger M, Kleiner M, Eckstein R, Tiesler NA, Engel U (2001) Microforming, CIRP Ann Manuf Technol, vol. 50, no. 2, pp. 445–462, https://doi.org/10.1016/S0007-8506(07)62991-6

  5. Van Brussel H, Peirs J, Reynaerts D, Delchambre A, Reinhart G, Roth N, Weck M, Zussman E (2000) Assembly of Microsystems. Annals CIRP 49(2):451–472. https://doi.org/10.1016/S0007-8506(07)63450-7

    Article  Google Scholar 

  6. Fu MW, Chan WL, Yang B (2011) Study of size effects on material deformation behaviour in micro-deep drawing of copper sheet metal, in Special edition: 10th International Conference on Technology of Plasticity, G. Hirt and A. E. Tekkaya, Eds., Aachen, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, pp. 985–990

  7. Kals RTA (1998) Fundamentals on the miniaturization of sheet metal working processes, Ph.D. thesis, University of Erlangen-Nuremberg, Erlangen, Germany, https://doi.org/10.25593/3-87525-115-6

  8. Xu Z, Peng L, Fu MW, Lai X (2015) Size effect affected formability of sheet metals in micro/meso scale plastic deformation: experiment and modeling. Int J Plast 68:34–54. https://doi.org/10.1016/j.ijplas.2014.11.002

    Article  Google Scholar 

  9. Tiesler NA, Engel U (2000) Microforming - effects of miniaturization. In: Pietrzyk M, Kusiak J, Majta J, Hartley P, Pillinger I (eds) in Metal forming 2000. Taylor & Francis, pp 355–360

  10. Lanza G, Schlipf M, Fleischer J (2008) Quality assurance for micro manufacturing processes and primary-shaped micro components. Microsyst Technol 14(12):1823–1830. https://doi.org/10.1007/s00542-008-0608-1

    Article  Google Scholar 

  11. Vollertsen F, Hu Z (2008) Determination of size-dependent friction functions in sheet metal forming with respect to the distribution of the contact pressure. Prod Eng Res Devel 2(4):345–350. https://doi.org/10.1007/s11740-008-0130-4

    Article  Google Scholar 

  12. Shimizu T, Murashige Y, Ito K, Manabe K (2009) Influence of surface topographical interaction between tool and material in micro-deep drawing. J Solid Mech Mater Eng 3(2):397–408. https://doi.org/10.1299/jmmp.3.397

    Article  Google Scholar 

  13. Stoyanov P, Chromik RR (2017) Scaling effects on materials tribology: from macro to micro scale. Materials 10(5). https://doi.org/10.3390/ma10050550

  14. Shimizu T, Murashige Y, Iwaoka S, Yang M, Manabe K (2013) Scale dependence of adhesion behavior under dry friction in progressive micro-deep drawing. J Solid Mech Mater Eng 7(2):251–263. https://doi.org/10.1299/jmmp.7.251

    Article  Google Scholar 

  15. Gong F, Guo B (2013) Effects of solid lubrication film on SKD11 in micro sheet forming. Surf Coat Technol 232:814–820. https://doi.org/10.1016/j.surfcoat.2013.06.103

    Article  Google Scholar 

  16. Guo B, Gong F, Wang C, Shan D (2010) Size effect on friction in scaled down strip drawing. J Mater Sci 45:4067–4072. https://doi.org/10.1007/s10853-010-4492-6

    Article  Google Scholar 

  17. Shimizu T, Iwaoka S, Yang M, Manabe K (2011) Scale dependence of dry friction in micro sheet metal forming, in 10th International Conference on Technology of Plasticity, Steel Research International, pp. 979–984

  18. Luo L, Jiang Z, Wei D (2017) Influences of micro-friction on surface finish in micro deep drawing of SUS304 cups. Wear 374–375. https://doi.org/10.1016/j.wear.2016.11.043

  19. Flosky H, Vollertsen F (2014) Wear behaviour in a combined micro blanking and deep drawing process. CIRP Ann Manuf Technol 63(1):281–284. https://doi.org/10.1016/j.cirp.2014.03.125

    Article  Google Scholar 

  20. Kim HS, Lee YS (Feb. 2012) Size dependence of flow stress and plastic behaviour in microforming of polycrystalline metallic materials. Proc Inst Mech Eng C J Mech Eng Sci 226(2):403–412. https://doi.org/10.1177/0954406211414473

  21. Hoffmann H, Hong S (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. Annals CIRP 55(1). https://doi.org/10.1016/S0007-8506(07)60412-0

  22. Zhu C, Xu J, Yu H, Shan D, Guo B (2021) Size effect on the high strain rate micro/meso-tensile behaviors of pure titanium foil. J Mater Res Technol 11:2146–2159. https://doi.org/10.1016/J.JMRT.2021.02.022

    Article  Google Scholar 

  23. Liu JG, Fu MW, Lu J, Chan WL (2011) Influence of size effect on the springback of sheet metal foils in micro-bending. Comput Mater Sci 50(9):2604–2614. https://doi.org/10.1016/j.commatsci.2011.04.002

    Article  Google Scholar 

  24. Chan WL, Fu MW, Yang B (2012) Experimental studies of the size effect affected microscale plastic deformation in micro upsetting process. Mater Sci Eng A 534:374–383. https://doi.org/10.1016/j.msea.2011.11.083

    Article  Google Scholar 

  25. Fang Z, Jiang Z, Wang X, Zhou C, Wei D, Liu X (2015) Grain size effect of thickness/average grain size on mechanical behaviour, fracture mechanism and constitutive model for phosphor bronze foil. Int J Adv Manuf Technol 79:9–12. https://doi.org/10.1007/s00170-015-6928-2

    Article  Google Scholar 

  26. Han P, Yuan G, Zhu X, Xing Y, Wang X (2022) Grain size effect of pure Ti foils by micro blanking-deep-drawing compound process. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-022-10279-z

    Article  Google Scholar 

  27. Xu Z, Peng L, Bao E (2018) Size effect affected springback in micro/meso scale bending process: experiments and numerical modeling. J Mater Process Technol 252:407–420. https://doi.org/10.1016/j.jmatprotec.2017.08.040

    Article  Google Scholar 

  28. Diehl A, Engel U, Geiger M (2010) Influence of microstructure on the mechanical properties and the forming behaviour of very thin metal foils. Int J Adv Manuf Technol 47:1–4. https://doi.org/10.1007/s00170-008-1851-4

    Article  Google Scholar 

  29. Meng B, Zhang YY, Cheng C, Han JQ, Wan M (2018) Effect of plastic anisotropy on microscale ductile fracture and microformability of stainless steel foil. Int J Mech Sci 148:620–635. https://doi.org/10.1016/j.ijmecsci.2018.09.027

    Article  Google Scholar 

  30. Zhu C, Xu J, Yu H, Shan D, Guo B (2021) Grain size effect on formability in electromagnetically assisted micro-bulging of pure titanium sheet. in Minerals, metals and materials Series. Springer Science and Business Media Deutschland GmbH, pp 1351–1359. doi: https://doi.org/10.1007/978-3-030-75381-8_112.

  31. Gau J-T, Principe C, Wang J (2007) An experimental study on size effects on flow stress and formability of aluminm and brass for microforming. J Mater Process Technol 184:42–46. https://doi.org/10.1016/j.jmatprotec.2006.11.003

    Article  Google Scholar 

  32. Meng B, Fu MW (2015) Size effect on deformation behavior and ductile fracture in microforming of pure copper sheets considering free surface roughening. Mater Des 83:400–412. https://doi.org/10.1016/j.matdes.2015.06.067

    Article  Google Scholar 

  33. Furushima T, Tsunezaki H, Manabe K, Alexsandrov S (2014) Ductile fracture and free surface roughening behaviors of pure copper foils for micro/meso-scale forming. Int J Mach Tools Manuf 76:34–48. https://doi.org/10.1016/j.ijmachtools.2013.10.001

    Article  Google Scholar 

  34. Groche P, Schäfer R, Justinger H, Ludwig M (2010) On the correlation between crystallographic grain size and surface evolution in metal forming processes. Int J Mech Sci 52(3):523–530. https://doi.org/10.1016/j.ijmecsci.2009.11.017

    Article  Google Scholar 

  35. Zhao J, Brockett A, Razali AR, Qin Y, Harrison C, Ma Y (2010) Micro-sheet-forming and case studies. Steel Res Int 81(9):1185–1188. https://doi.org/10.1002/srin.201190002

    Article  Google Scholar 

  36. Behrens G, Vollertsen F (2013) Influence of Tool geometry variation on the Punch Force in Micro Deep drawing. Key Eng Mater 554–557. https://doi.org/10.4028/www.scientific.net/KEM.554-557.1306

  37. Hu Z (2011) Realisation and application of size dependent FEM-simulation for deep drawing of rectangular work pieces. CIRP J Manuf Sci Technol 4(1):90–95. https://doi.org/10.1016/j.cirpj.2011.05.006

    Article  Google Scholar 

  38. Luo L, Wei D, Zu G, Jiang Z (2021) Influence of blank holder-die gap on micro-deep drawing of SUS304 cups. Int J Mech Sci 191. https://doi.org/10.1016/J.IJMECSCI.2020.106065

  39. Fujimoto K, Yang M, Hotta M, Koyama H, Nakano S, Morikawa K, Cairney J (2006) Fabrication of dies in micro-scale for micro-sheet metal forming. J Mater Process Technol 177:1–3. https://doi.org/10.1016/j.jmatprotec.2006.04.094

    Article  Google Scholar 

  40. Nielsen PS, Paldan NA, Calaon M, Bay N (2010) Scale effects in metal-forming friction and lubrication. J Eng Tribology 225:924–931. https://doi.org/10.1177/1350650111405254

    Article  Google Scholar 

  41. Gong F, Guo B, Wang CJ, bin Shan D (2010) Effects of lubrication conditions on micro deep drawing, Microsystem Technologies, vol. 16, no. 10, pp. 1741–1747, Oct. https://doi.org/10.1007/s00542-010-1108-7

  42. Tetzel H (2015) Influence of tribology size effect on Stribeck curve in micro deep drawing. MATEC Web Conferences 21. https://doi.org/10.1051/matecconf/20152109014

  43. Rathmann L, Czotscher T, Radel T, Vollertsen F (2020) Investigation on water as lubricant in combination with a structured tool surface in micro metal forming. IOP Conf Ser Mater Sci Eng 967(1). https://doi.org/10.1088/1757-899X/967/1/012005

  44. Arinbjarnar Ú, Moghadam M, Nielsen CV (2022) Application of calcium carbonate as green lubricant additive in sheet metal forming. Key Eng Mater 926:1133–1142. https://doi.org/10.4028/p-x87o62

    Article  Google Scholar 

  45. Arinbjarnar Ú, Moghadam M, Nielsen CV (2024) Application of calcium carbonate as a green lubricant additive in an industrial context of sheet metal forming

  46. Zhou M, Jia F, Yan J, Wu H, Jiang Z (2022) Lubrication performance and mechanism of water-based TiO2 nanolubricants in micro deep drawing of pure titanium foils. Lubricants 10(11):292. https://doi.org/10.3390/lubricants10110292

    Article  Google Scholar 

  47. Kamali H, Xie H, Jia F, Wu H, Zhao H (2019) Effects of nano-particle lubrication on micro deep drawing of Mg-Li alloy. Int J Adv Manuf Technol 104:9–12. https://doi.org/10.1007/s00170-019-04267-z

    Article  Google Scholar 

  48. Kamali H, Xie H, Zhao H, Jia F, Wu H, Jiang Z (2020) Frictional size effect of light-weight Mg-Li alloy in micro deep drawing under nano-particle lubrication condition. Mater Trans 61(2):239–243. https://doi.org/10.2320/matertrans.MT-ML2019002

    Article  Google Scholar 

  49. Srinivasan N, Rajenthirakumar D, Sridhar R, Amutha P (2020) Tribomechanical performance of MgO–ZnO nanoparticles as lubricating additives in the microextrusion process. Proc Inst Mech Eng C J Mech Eng Sci 234(22):4543–4553. https://doi.org/10.1177/0954406220922859

    Article  Google Scholar 

  50. Brinksmeier E, Gläbe R, Riemer O, Twardy S (2008) Potentials of precision machining processes for the manufacture of micro forming molds. Microsyst Technol 14(12):1983–1987. https://doi.org/10.1007/s00542-008-0656-6

    Article  Google Scholar 

  51. Wang C, Guo B, Shan D, Yao Y, Gong F (2010) Size effect of tribology behaviour in micro U-deep drawing with T2 copper foil. Steel Res Int 81(9):1177–1180

    Google Scholar 

  52. Bech JI, Bay N, Eriksen M (1999) Entrapment and escape of liquid lubricant in metal forming. Wear 232:134–139. https://doi.org/10.1016/S0043-1648(99)00136-2

    Article  Google Scholar 

  53. Shimizu I, Martins PAF, Bay N, Andreasen JL, Bech JI (2010) Influences of lubricant pocket geometry and working conditions upon micro-lubrication mechanisms in upsetting and strip drawing. Int J Surf Sci Eng 4(1):42–54. https://doi.org/10.1504/ijsurfse.2010.029628

    Article  Google Scholar 

  54. Nellemann T, Bay N, Wanheim T (1977) Real area of contact and friction stress - the role of trapped lubricant. Wear 43:45–53. https://doi.org/10.1016/0043-1648(77)90042-4

    Article  Google Scholar 

  55. Zwicker M, Spangenberg J, Martins P, Nielsen CV (2022) Investigation of material strength and oil compressibility on the hydrostatic pressure build-up in metal forming lubricants, in Procedia CIRP, Elsevier B.V., pp. 78–82. https://doi.org/10.1016/j.procir.2022.10.053

  56. Mizuno T, Okamoto M (1982) Effects of lubricant viscosity at pressure and sliding velocity on lubricating conditions in the compression-friction test on sheet metals. Trans ASME: J Lubrication Technol 104(1):53–59. https://doi.org/10.1115/1.3253164

    Article  Google Scholar 

  57. Bech JI, Bay N, Eriksen M (1998) A study of mechanisms of liquid lubrication in metal forming. Annals CIRP 47(1):221–226. https://doi.org/10.1016/S0007-8506(07)62822-4

    Article  Google Scholar 

  58. Sulaiman MH, Christiansen P, Bay N (2017) The influence of tool texture on friction and lubrication in strip reduction testing. Lubricants 5(1). https://doi.org/10.3390/lubricants5010003

  59. Schumann P, Lindner R, Groche P (2023) Influence of different deterministic surface texturing processes on friction and tool life for load collectives in sheet metal forming, in Proceedings of the Tribology 2023 International Conference, Lissabon, Portugal

  60. Steitz M, Stein P, Groche P (2015) Influence of hammer peened surface textures. Tribol Lett 58(24). https://doi.org/10.1007/s11249-015-0502-9

  61. Steitz M, Klasen P, Groche P (2015) Wear behavior of hammer peened surface textures during strip drawing test, in Proceeding of the 34th International Deep Drawing Research Group Conference, pp. 270–281

  62. Uehara Y, Wakuda M, Yamauchi Y, Kanzaki S, Sakaguchi S (2004) Tribological properties of dimpled silicon nitride under oil lubrication. J Eur Ceram Soc 24(2):369–373. https://doi.org/10.1016/S0955-2219(03)00220-6

    Article  Google Scholar 

  63. Jahn SF, Müller B, Hilfinger FS, Schubert A (2015) Tribological impact of the finishing technology onto meso-and microforming processes, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/20152109009

  64. Twardy S, Riemer O, Brinksmeier E (2010) Tribology of micro milled surfaces. Key Eng Mater 447 448:681–684. https://doi.org/10.4028/www.scientific.net/KEM.447-448.681

    Article  Google Scholar 

  65. Wang C, Guo B, Shan D, Bai X (2015) Effects of interfacial contact states on tribological behaviour in micro-sheet forming. Int J Mech Sci 101–102. https://doi.org/10.1016/j.ijmecsci.2015.07.018

  66. Funazuka T, Dohda K, Shiratori T, Horiuchi S, Watanabe I (2001) Effect of punch surface microtexture on the microextrudability of AA6063 micro backward extrusion, Micromachines (Basel), vol. 13, no. 2022, https://doi.org/10.3390/mi13112001

  67. Castagne S, Taureza M, Song X (2014) Surface textures and friction control in microforming. Adv Mat Res 966–967. https://doi.org/10.4028/www.scientific.net/AMR.966-967.111

  68. Wang C, Shan D, Guo B, Xu J, Zhang H (2013) Effect of nano-crystals at surfaces induced by ion beam irradiation on the tribological behaviour in microforming. Vacuum 89(1):267–270. https://doi.org/10.1016/j.vacuum.2012.07.007

    Article  Google Scholar 

  69. Lin HS, Lin YC, Lee MR (2015) Effect of workpiece thickness and surface texturing on the micro cupping tests. in Key Engineering materials. Trans Tech Publications Ltd, pp 420–425. doi: https://doi.org/10.4028/www.scientific.net/KEM.626.420.

  70. Gong F, Guo B (2013) Effects of influencing factors on friction coefficient in microsheet forming. Mater Res Innovations. https://doi.org/10.1179/1432891713Z.000000000176

    Article  Google Scholar 

  71. Ma J, Gong F, Yang Z, Zeng W (2016) Microdeep drawing of C1100 microsquare cups using microforming technology. Int J Adv Manuf Technol 82:5–8. https://doi.org/10.1007/s00170-015-7476-5

    Article  Google Scholar 

  72. Gong F, Yang Z, Chen Q, Xie Z, Shu D, Yang J (2015) Influences of lubrication conditions and blank holder force on micro deep drawing of C1100 micro conical-cylindrical cup. Precis Eng 42:224–230. https://doi.org/10.1016/j.precisioneng.2015.05.004

    Article  Google Scholar 

  73. Losch A (2014) Sheet metal forming lubricants. in Encyclopedia of lubricants and Lubrication. Springer, Berlin Heidelberg, pp 1749–1764. doi: https://doi.org/10.1007/978-3-642-22647-2.

    Chapter  Google Scholar 

  74. Shimizu T, Yang M, Manabe K (2015) Classification of mesoscopic tribological properties under dry sliding friction for microforming operation. Wear 330–331. https://doi.org/10.1016/J.WEAR.2015.01.050

  75. Flosky H, Veenaas S, Feuerhahn F, Hartmann M, Vollertsen F (2014) Flaking during a micro blanking and deep drawing process, in Proceedings of the ICOMM2014, Bremen, Germany

  76. Wang C, Wang C, Guo B, Shan D (2014) Effects of tribological behavior of DLC film on micro-deep drawing processes. Trans Nonferrous Met Soc China (English Edition) 24(9):2877–2882. https://doi.org/10.1016/S1003-6326(14)63421-X

    Article  Google Scholar 

  77. Jean MD, Lian GF, Chen BS (2018) Tribological behaviors of DLC films and their application in micro-deep drawability. Acta Phys Pol A 134(1):429–433. https://doi.org/10.12693/APhysPolA.134.429

    Article  Google Scholar 

  78. Wang CJ, Cheng LD, Liu Y, Zhang H, Wang Y, Shan D, Guo B (2019) Research on micro-deep drawing process of concial part with ultra-thin copper foil using multi-layered DLC film-coated die. Int J Adv Manuf Technol 100:1–4. https://doi.org/10.1007/s00170-018-2757-4

    Article  Google Scholar 

  79. Hu Z, Wielage H, Vollertsen F (2011) Economic micro forming using DLC-and TiN-coated tools. J Technol Plast 36(2). https://doi.org/10.2478/v10211-011-0006-z

  80. Hu Z, Schubnov A, Vollertsen F (2012) Tribological behaviour of DLC-films and their application in micro deep drawing. J Mater Process Technol 212(3):647–652. https://doi.org/10.1016/j.jmatprotec.2011.10.012

    Article  Google Scholar 

  81. Wang C, Wang C, Guo B, Shan D (2014) Effect of tribological behavior of DLC film on micro-deep drawing processes. Trans Nonferrous Met Soc China 24:2877–2882. https://doi.org/10.1016/S1003-6326(14)63421-X

    Article  Google Scholar 

  82. Flosky H, Vollertsen F (2013) Wear behavior of a DLC-coated blanking and deep drawing tool combination. Key Eng Mater 549:511–517. https://doi.org/10.4028/www.scientific.net/KEM.549.511

    Article  Google Scholar 

  83. Sulaiman MH, Christiansen P, Bay N (2017) A study of DLC coatings for ironing of stainless steel, in Journal of Physics: Conference Series, Institute of Physics Publishing, https://doi.org/10.1088/1742-6596/896/1/012031

  84. Khadem M, Penkov OV, Yang HK, Kim DE (2017) Tribology of multilayer coatings for wear reduction: A review, Friction, vol. 5, no. 3. Tsinghua University Press, pp. 248–262, https://doi.org/10.1007/s40544-017-0181-7

  85. Dang C, Li J, Wang Y, Yang Y, Wang Y, Chen J (2017) Influence of multi-interfacial structure on mechanical and tribological properties of TiSiN/Ag multilayer coatings. J Mater Sci 52(5):2511–2523. https://doi.org/10.1007/s10853-016-0545-9

    Article  Google Scholar 

  86. Aizawa T (2019) Nanostructured DLC coating for protection of dies from wear-application of nanostructured DLC coating with tailored densities to dies. J JSTP 60(702):209–213

    Article  Google Scholar 

  87. Shimizu T, Kakegawa T, Yang M (2014) Micro-texturing of DLC thin film coatings and its tribological performance under dry sliding friction for microforming operation. in Procedia Engineering. Elsevier Ltd, pp 1884–1889. doi: https://doi.org/10.1016/j.proeng.2014.10.251.

  88. Shimizu T, Kan H, Messaoudi H, Vollertsen F, Yang M (2018) Geometrical design of micro-textured DLC coatings toward lubricant-free metal forming, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/201819013001

  89. Shimizu T, Kan H, Messaoudi H, Vollertsen F, Yang M (2019) Impact of geometrical parameters of micro-textured DLC on tribological properties under dry sliding friction. Manuf Rev (Les Ulis) 6. https://doi.org/10.1051/mfreview/2019018

  90. Omidvarnia F, Weng Feng L, Hansen HN, Sarhadi A, Lenau TA, Mortensen NH (2018) Design for manufacturability of macro and micro products: a case study of heat exchanger design. Int J Interact Des Manuf 12(3):995–1006. https://doi.org/10.1007/s12008-018-0457-9

    Article  Google Scholar 

  91. Toenjes A, Kovac J, Koehler B, Von Hehl A, Mehner A, Clausen B, Zoch HW (2018) Process chain for the fabrication of hardenable aluminium-zirconium micro-components by deep drawing, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/201819015013

  92. Hansen HN, Zhang Y, Islam A (2017) Tolerances in micro manufacturing, in World Congress on Micro and Nano Manufacturing (WCMNM 2017), Kaohsiung, Taiwan

  93. Onken AK, Wilhelmi P, Tracht K, Kuhfuss B (2018) Increased output in micro production by tolerance field widening and synchronisation, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/201819015006

  94. Zhao J, Yip ALK, Qin Y, Razali A, Fei ZC (2012) Machine and tool development for forming of polymeric tubular micro-components, Transactions of Nonferrous Metals Society of China (English Edition), vol. 22, no. SUPPL.2, https://doi.org/10.1016/S1003-6326(12)61711-7

  95. Razali AR, Ann CT, Ahmad AF, Shariff HM, Kasim NI, Musa MA (2017) Finite element structural analysis of a low energy micro sheet forming machine concept design, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, https://doi.org/10.1088/1757-899X/203/1/012006

  96. Qin Y, Razali AR, Zhou M, Zhao J, Harrison C, Wan Nawang WA (2012) Dynamic characteristics of a micro-sheet-forming machine system. Key Eng Mater 504–506. https://doi.org/10.4028/www.scientific.net/KEM.504-506.599

  97. Behrens BA, Krimm R, Reich D, Teichrib S (2016) Linear drives in metal forming machines and peripherals - recent developments. J Manuf Process 22:192–198. https://doi.org/10.1016/j.jmapro.2016.03.013

    Article  Google Scholar 

  98. Schneider R, Schepp F, Groche P (2001) Linearmotorpressen zur inline-Fertigung von mikrotechnischen Bauteilen, EFB-Kolloquium 2001

  99. Groche P, Schneider R (2004) Method for the optimization of forming presses for the manufacturing of micro parts. CIRP Ann 53(1):281–284. https://doi.org/10.1016/S0007-8506(07)60698-2

    Article  Google Scholar 

  100. Niehoff HS, Vollertsen F (2008) Versatile microforming press. Int J Mater Prod Technol 32(4):423–433. https://doi.org/10.1504/ijmpt.2008.022144

    Article  Google Scholar 

  101. Xu J, Guo B, Shan D, Wang C, Li J, Liu Y, Qu D (2012) Development of a micro-forming system for micro-punching process of micro-hole arrays in brass foil. J Mater Process Technol 212(11):2238–2246. https://doi.org/10.1016/j.jmatprotec.2012.06.020

    Article  Google Scholar 

  102. Qin Y, Ma Y, Harrison C, Brockett A, Zhou M, Zhao J, Law F, Razali AR, Smith R, Eguia J (2008) Development of a new machine system for the forming of micro-sheet-products. IntJ Mater Form no. Suppl 1:475–478. https://doi.org/10.1007/s12289-008-0098-9

    Article  Google Scholar 

  103. Qin Y, Harrison C, Ma Y, Brockett A, Juster N, Uriarte L, Cuevas A, Eguia J (2007) Process and machine system development for the forming of miniature/micro sheet metal products, in Proceedings of the 7th Euspen International Conference, Bremen

  104. Zhou M, Qin Y, Harrison C, Brockett A, Ma Y (2010) Finite-element and experimental analysis of dynamic behaviours of a micro-stamping tool system. Int J Adv Manuf Technol 47:9–12. https://doi.org/10.1007/s00170-009-2138-0

    Article  Google Scholar 

  105. Presz W, Andersen B, Wanheim T (2006) Piezoelectric driven micro-press for microforming manufacturing and processing. J Achievement Mater Manuf Eng 18:1–2

    Google Scholar 

  106. Lee H-J, Lee N-K, Lee G-A-, Lee H-W, Choi S, Chu E-D, Kim T, Shin J (2008) Research on the modulating of the desktop micro forming system to micro factory, in Proceedings of the International Conference on Smart Manufacturing Application, pp. 196–199

  107. OMEGA-F1/EPS-30-Series Yamada Dobby. Accessed: Sep. 06, 2023. [Online]. Available: http://www.yamadadobby.com/en/omega.html

  108. BSTA 200 Bruderer. Accessed: Sep. 06, 2023. [Online]. Available: https://www.bruderer.com/en/products/stamping-presses/bsta-200

  109. High-speed press VS Mabu. Accessed: Sep. 06, 2023. [Online]. Available: https://www.mabu.de/en/High-speed_press_VS

  110. Hadi S, Yu HL, Tieu K, Lu C (2013) Simulation of defects in micro-deep drawing of an aluminium alloy foil. AIP Conf Proc 1532:298–303. https://doi.org/10.1063/1.4806838

    Article  Google Scholar 

  111. Hu D, Zheng JY, Fu MW (2022) Study on size-related product quality of multiscale central-punched cups fabricated by compound forming directly using brass sheet. Int J Adv Manuf Technol 120:11–12. https://doi.org/10.1007/s00170-022-09222-z

    Article  Google Scholar 

  112. Zheng JY, Yang HP, Fu MW, Ng C (2019) Study on size effect affected progressive microforming of conical flanged parts directly using sheet metals. J Mater Process Technol 272:72–86. https://doi.org/10.1016/j.jmatprotec.2019.05.007

    Article  Google Scholar 

  113. Zhang R, Lan S, Xu Z, Qiu D, Peng L (2021) Investigation and optimization of the ultra-thin metallic bipolar plate multi-stage forming for proton exchange membrane fuel cell. J Power Sources 484. https://doi.org/10.1016/j.jpowsour.2020.229298

  114. Li WT, Fu MW, Wang JL, Meng B (2016) Grain size effect on multi-stage micro deep drawing of micro cup with domed bottom. Int J Precis Eng Manuf 17(6):765–773. https://doi.org/10.1007/s12541-016-0094-9

    Article  Google Scholar 

  115. Gau J-T, Chen P-H, Gu H, Lee R-S (2013) The coupling influence of size effects and strain rates on the formability of austenitic stainless steel 304 foil. J Mater Process Technol 213:376–382. https://doi.org/10.1016/j.jmatprotec.2012.10.004

    Article  Google Scholar 

  116. Talyan V, Wagoner RH, Lee JK (1998) Formability of Stainless Steel. Metall Mater Trans A 29A:2161–2172. https://doi.org/10.1007/s11661-998-0041-1

    Article  Google Scholar 

  117. Vollertsen F, Hu Z (2010) Analysis of punch velocity dependant process window in micro deep drawing. Prod Eng Res Devel 4(6):553–559. https://doi.org/10.1007/s11740-010-0241-6

    Article  Google Scholar 

  118. Vollertsen F (2012) Effects on the deep drawing diagram in micro forming. Prod Eng Res Devel 6(1):11–18. https://doi.org/10.1007/s11740-011-0355-5

    Article  Google Scholar 

  119. Wielage H, Hu Z, Vollertsen F (2012) Influence of punch velocity on spring back in micro forming. Key Eng Mater 504–506. https://doi.org/10.4028/www.scientific.net/KEM.504-506.593

  120. Justinger H, Hirt G (2007) Analysis of size-effects in the miniaturized deep drawing process. Key Eng Mater 344:791–798. https://doi.org/10.4028/www.scientific.net/kem.798-344.791

    Article  Google Scholar 

  121. Behrens G, Ruhe M, Tetzel H, Vollertsen F (2015) Effect of tool geometry variations on the punch force in micro deep drawing of rectangular components. Prod Eng Res Devel 9(2):195–201. https://doi.org/10.1007/s11740-015-0604-0

    Article  Google Scholar 

  122. Behrens G, Trier FO, Tetzel H, Vollertsen F (2016) Influence of tool geometry variations on the limiting drawing ratio in micro deep drawing. IntJ Mater Form 9(2):253–258. https://doi.org/10.1007/s12289-015-1228-9

    Article  Google Scholar 

  123. Heinrich L, Kobayashi H, Shimizu T, Yang M, Vollertsen F (2017) Influence of asymmetrical drawing radius deviation in micro deep drawing. J Phys Conf Ser 896(1). https://doi.org/10.1088/1742-6596/896/1/012060

  124. Fu MW, Yang B, Chan WL (2013) Experimental and simulation studies of micro blanking and deep drawing compound process using copper sheet. J Mater Process Technol 213(1):101–110. https://doi.org/10.1016/j.jmatprotec.2012.08.007

    Article  Google Scholar 

  125. Yeh FH, Li CL, Tsay KN (2012) An analysis of forming limit for various arc radii of punch in micro deep drawing of the square cup. Adv Mat Res 433–440. https://doi.org/10.4028/www.scientific.net/AMR.433-440.660

  126. Saotome Y, Yasuda K, Kaga H (2001) Microdeep drawability of very thin sheet steels. J Mater Process Technol 113:641–647. https://doi.org/10.1016/S0924-0136(01)00626-4

    Article  Google Scholar 

  127. Brabie G, Costache E, Bologan M (2013) Influence of the tool clearance values on the quality of the small drawn parts. Appl Mech Mater 371:705–709. https://doi.org/10.4028/www.scientific.net/AMM.371.705

    Article  Google Scholar 

  128. Brabie G, Chirita B, Costache E, Teaca S (2014) Influence of the tool clearances on the dimensional accuracy of mini drawn parts. Adv Mat Res 1036:309–313. https://doi.org/10.4028/www.scientific.net/AMR.1036.309

    Article  Google Scholar 

  129. Stellin T, Van Tijum R, Merklein M, Engel U (2014) Study of microforging of parallel ribs from metal strip, in Key Engineering Materials, Trans Tech Publications Ltd, pp. 565–572. https://doi.org/10.4028/www.scientific.net/KEM.611-612.565

  130. Stock G (1996) Alternative Verfahren zur Verbesserung des Tiefziehergebnisses auf Einfachwirkenden Pressen, Fertigungstechnik, vol. 380. VDI-Verlag, Düsseldorf

  131. Doege E, Elend L-E (2001) Design and application of pliable blank holder systems for the optimization of process conditions in sheet metal forming. J Mater Process Technol 111:182–187. https://doi.org/10.1016/S0924-0136(01)00506-4

    Article  Google Scholar 

  132. Allwood JM, Duncan SR, Cao J, Groche P, Hirt G, Kinsey B, Kuboki T, Liewald M, Sterzing A, Tekkaya AE (2016) Closed-loop control of product properties in metal forming. CIRP Ann Manuf Technol 65(2):573–596. https://doi.org/10.1016/j.cirp.2016.06.002

    Article  Google Scholar 

  133. Spur G, Thoms V, Liewald M, Straube O (1994) Regelung Des Tiefziehprozesses in Der Preßteilefertigung Mit dem blechkanteneinlauf als Regelgröße. Blech Rohre Profile 41(4):237–240

    Google Scholar 

  134. Spur G, Straube O (1994) Materialflußsteuerung unter dem Niederhalter im geschlossenen Regelkreis, in Neuere Entwicklungen in der Blechumformung, pp. 293–306

  135. Bräunlich H (2002) Blecheinzugsregelung beim Tiefziehen mit Niederhalter - ein Beitrag zur Erhöhung der Prozeßstabilität. Verl. Wiss. Scripten., Zwickau

  136. Griesbach B (2000) In-Prozeß Stoffflußmessung zur Analyse und Führung von Tiefziehvorgängen, Fertigungstechnik, vol. 547. VDI-Verlag, Düsseldorf

  137. Rittmeier D-W-IS (2007) Systemunterstützte Umformung. Cuvillier, Göttingen

  138. Tommerup S, Endelt B (2012) Experimental verification of a deep drawing tool system for adaptive blank holder pressure distribution. J Mater Process Technol 212(11):2529–2540. https://doi.org/10.1016/j.jmatprotec.2012.06.015

    Article  Google Scholar 

  139. Kraft M, Bürgel U (2017) Novel concept for measurement of global blank draw-in when deep drawing outer skin automotive components, in Journal of Physics: Conference Series, Institute of Physics Publishing, https://doi.org/10.1088/1742-6596/896/1/012034

  140. Groche P, Breunig A, Chen K, Molitor DA, Ha J, Kinsey BL, Korkolis YP (2022) Effectiveness of different closed-loop control strategies for deep drawing on single-acting 3D servo presses. CIRP Ann 71(1):357–360. https://doi.org/10.1016/j.cirp.2022.04.072

    Article  Google Scholar 

  141. Simonetto E, Ghiotti A, Brun M, Bruschi S, Filippi S (2023) Adaptive metal flow control in stamping through ferrofluidic actuators. CIRP Ann 72:209–212. https://doi.org/10.1016/j.cirp.2023.03.030

    Article  Google Scholar 

  142. Calmano S, Hesse D, Hoppe F, Groche P (2015) Evaluation of control strategies in forming processes, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/20152104002

  143. Heingärtner J, Renkci Y, Hora P (2013) Application of non-destructive testing to control material properties of stainless steel in kitchen sink production. in Towards Zero Fail Prod Methods Adv Model Techniques Process Integr Virtual Control, pp. 75–80

  144. Heingärtner J, Fischer P, Harsch D, Renkci Y, Hora P (2017) Q-Guard - An intelligent process control system, in Journal of Physics: Conference Series, Institute of Physics Publishing, https://doi.org/10.1088/1742-6596/896/1/012032

  145. Fischer P, Harsch D, Heingärtner J, Renkci Y, Hora P (2017) A knowledge-based control system for the robust manufacturing of deep drawn parts. Procedia Eng 207:42–47. https://doi.org/10.1016/j.proeng.2017.10.735

    Article  Google Scholar 

  146. Fischer P, Heingärtner J, Renkci Y, Hora P (2018) Experiences with inline feedback control and data acquisition in deep drawing. Procedia Manuf 15:949–954. https://doi.org/10.1016/j.promfg.2018.07.401

    Article  Google Scholar 

  147. Fischer P, Harsch D, Heingartner J, Renkci Y, Hora P (2018) Implementation of feedback control in kitchen sink production, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, https://doi.org/10.1088/1757-899X/418/1/012110

  148. Kott M, Erz C, Heingärtner J, Groche P (2020) Controllability of temperature induced friction effects during deep drawing of car body parts with high drawing depths in series production. Procedia Manuf 47:553–560. https://doi.org/10.1016/j.promfg.2020.04.166

    Article  Google Scholar 

  149. Nielsen CV, Arinbjarnar Ú, Ceron E, Madsen TL, Møller B, Madsen KM, Siimut K (2023) A novel ironing punch concept with adjustable tool diameter. CIRP Ann 71(1):213–216. https://doi.org/10.1016/j.cirp.2023.03.001

    Article  Google Scholar 

  150. Lin B-T, Huang K-M, Kuo CC, Wang WT (2015) Improvement of deep drawability by using punch surfaces with microridges. J Mater Process Technol 225:275–285. https://doi.org/10.1016/j.jmatprotec.2015.06.012

    Article  Google Scholar 

  151. Lin BT, Yang CY (2017) Applying the Taguchi method to determine the influences of a microridge punch design on the deep drawing. Int J Adv Manuf Technol 88:5–8. https://doi.org/10.1007/s00170-016-8911-y

    Article  Google Scholar 

  152. Lin BT, Yang CY (2017) Using a punch with micro-ridges to shorten the multistage deep drawing process for stainless steels. Int J Adv Manuf Technol 88:9–12. https://doi.org/10.1007/s00170-016-8928-2

    Article  Google Scholar 

  153. Zhang Z, Chen N, Furushima T, Li B (2018) Deformation behavior of metal foil in micro pneumatic deep drawing process. Procedia Manuf 15:1422–1428. https://doi.org/10.1016/J.PROMFG.2018.07.339

    Article  Google Scholar 

  154. Yamaguchi R, Shimizu T, Yang M (2016) Influence of servo motion on forming limit of thin metallic foils using micro bulge test. Key Eng Mater 716:208–214. https://doi.org/10.4028/www.scientific.net/KEM.716.208

    Article  Google Scholar 

  155. Yamaguchi R, Bai Y, Shimizu T, Yang M (2015) Effect of ultrasonic vibration on stress relaxation in micro-compression test with step motion. Mech Eng J 2(1). https://doi.org/10.1299/mej.14-00410

  156. Hadi S (2021) Micro cup drawing without wrinkles using a bulged punch. Eng J 25(12):51–62. https://doi.org/10.4186/EJ.2021.25.12.51. A. K. Tieu, C. Lu, H. L. Yu, A. Kusmoko, A. Murdani, and D. Ginting

    Article  Google Scholar 

  157. Tröber P, Weiss HA, Kopp T, Golle R, Volk W (2017) On the correlation between thermoelectricity and adhesive tool wear during blanking of aluminum sheets. Int J Mach Tools Manuf 118–119. https://doi.org/10.1016/j.ijmachtools.2017.03.005

  158. Tröber P, Welm M, Weiss HA, Demmel P, Golle R, Volk W (2021) Temperature, thermoelectric current and adhesion formation during deep drawing. Wear 477:203839. https://doi.org/10.1016/j.wear.2021.203839

    Article  Google Scholar 

  159. Welm M, Tröber P, Weiss HA, Demmel P, Golle R, Volk W (2020) Thermoelectrically based approaches to reduce adhesive wear during blanking. JOM 72(7):2525–2535. https://doi.org/10.1007/s11837-020-04191-8

    Article  Google Scholar 

  160. Tröber P, Weiss HA, Kopp T, Golle R, Volk W (2022) Reduction of adhesive wear with use of tool coating reducing thermoelectric currents. IOP Conf Ser Mater Sci Eng 1238:012033. https://doi.org/10.1088/1757-899X/1238/1/012033

    Article  Google Scholar 

  161. Lee R-S, Chen C-H, Gau J-T (2008) Effect of thickness to grain size ratio on drawability for micro deep drawing of AISI 304 stainless steel, in Proceedings of the 9th International Conference on Technology of Plasticity, pp. 183–188

  162. Wang C, Wang H, Chen G, Zhu Q, Zhang G, Cui L, Zhang P (2020) Size effects affected uniaxial tensile properties and formability in rubber pad microforming process of pure nickel thin sheets. Int J Mech Sci 182. https://doi.org/10.1016/j.ijmecsci.2020.105757

  163. Gu X, Wang X, Ma Y, Zhang H, Lu J, Wang K, Liu H (2021) Investigation on grain size effect and forming mechanism of laser shock hydraulic microforming of copper foil. Int J Adv Manuf Technol 114:1049–1064. https://doi.org/10.1007/s00170-021-06969-9

    Article  Google Scholar 

  164. Liu Z, Zhang S, Xia D, Han Q, Wang S, Zhang X, Liu J, Wu S, Zhu E (2022) Effect of thickness on tensile properties and fracture mode of 316L stainless steel sheet, in Proceedings of SPIE, SPIE-Intl Soc Optical Eng, p. 163. https://doi.org/10.1117/12.2635174

  165. Furushima T, Tsunezaki H, Manabe K, Alexsandrov S (2018) Fracture and surface roughening behaviors in micro metal forming. Procedia Manuf 15:1481–1486. https://doi.org/10.1016/j.promfg.2018.07.331

    Article  Google Scholar 

  166. Weiss M, Zhang P, Pereira MP, Rolfe BF, Wilkosz DE, Hodgson PD (2021) Understanding size effects and forming limits in the micro-stamping of industrial stainless steel foils. Met (Basel) 11(1). https://doi.org/10.3390/met11010038

  167. Sène NA, Balland P, Arrieux R, Vacher P (2013) Determination and validation of micro-forming limit diagrams for very thin materials. IntJ Mater Form 6(1):41–48. https://doi.org/10.1007/s12289-011-1068-1

    Article  Google Scholar 

  168. Wang J, Fu MW, Ran J (2014) Analysis of size effect on flow-induced defect in micro-scaled forming process. Int J Adv Manuf Technol 73:9–12. https://doi.org/10.1007/s00170-014-5947-8

    Article  Google Scholar 

  169. Bauer A, Mehner T, Awiszus B, Lampke T (2021) Metal foils for bipolar plates - correlation of initial grain size and forming behavior of 316L, in Forming the Future, The Mineral, Metals & Materials Society, pp. 1743–1756. https://doi.org/10.1007/978-3-030-75381-8_146

  170. Si S, Wu Q, Mei D, Mao W, Song S, Xu L, Zuo T, Wang Y (2022) Numerical simulation and experiment of microstamping process to fabricate multi-channel of SUS304 thin sheets with different grain size. Int J Adv Manuf Technol 121:9–10. https://doi.org/10.1007/s00170-022-09776-y

    Article  Google Scholar 

  171. Cetin ME, Cora ÖN, Sofuoglu H (2020) Micro deep drawability of the superplastic Zn-22Al alloy at a high strain rate and room temperature. J Eng Mater Technol 142. https://doi.org/10.1115/1.4044440

  172. Tóth LS, Lapovok R, Molotnikov A, Gu C, Fundenberger J-J, Davies CHJ (2010) Texture evolution during micro-drawing of ultrafine grained copper. Mater Sci Eng A 527:4633–4640. https://doi.org/10.1016/j.msea.2010.04.011

    Article  Google Scholar 

  173. Xu J, Li J, Zhu X, Fan G, Shan D, Guo B (2015) Microstructural evolution at micro/meso-scale in an ultrafine-grained pure aluminum processed by equal-channel angular pressing with subsequent annealing treatment. Materials 8(11):7447–7460. https://doi.org/10.3390/ma8115391

    Article  Google Scholar 

  174. Xu J, Li J, Shi L, Shan D, Guo B (2015) Effects of temperature, strain rate and specimen size on the deformation behaviors at micro/meso-scale in ultrafine-grained pure Al. Mater Charact 109:181–188. https://doi.org/10.1016/j.matchar.2015.10.003

    Article  Google Scholar 

  175. Molotnikov A, Lapovok R, Gu CF, Davies CHJ, Estrin Y (2012) Size effects in micro cup drawing. Mater Sci Eng A 550:312–319. https://doi.org/10.1016/j.msea.2012.04.079

    Article  Google Scholar 

  176. Reis LM, Carvalho AP, Lee I, Wu YH, Han JK, Santala MK, Kawasaki M, Figueiredo RB (2023) Cold angular rolling process as a continuous severe plastic deformation technique. J Mater Sci 58(10):4621–4636. https://doi.org/10.1007/s10853-023-08295-9

    Article  Google Scholar 

  177. Utsunomiya H, Hatsuda K, Sakai T, Saito Y (2004) Continuous grain refinement of aluminum strip by conshearing. Mater Sci Engineering: A 372:1–2. https://doi.org/10.1016/j.msea.2003.12.014

    Article  Google Scholar 

  178. Klinge L, Siemers C, Kluy L, Groche P (2022) Nanostructured Ti–13Nb–13Zr for dental implant applications produced by severe plastic deformation. J Mater Res 37(16):2581–2588. https://doi.org/10.1557/s43578-022-00587-1

    Article  Google Scholar 

  179. Dhal A, Panigrahi SK, Shunmugam MS (2018) Investigation into the micro deep drawing capabilities of a specially engineered refined aluminium alloy, MATEC Web of Conferences, vol. 190, https://doi.org/10.1051/matecconf/201819010001

  180. Dhal A, Panigrahi SK, Shunmugam MS (2019) Achieving excellent microformability in aluminum by engineering a unique ultrafine-grained microstructure. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-46957-4

  181. An J, Wang YF, Wang QY, Cao WQ, Huang CX (2015) The effects of reducing specimen thickness on mechanical behavior of cryo-rolled ultrafine-grained copper. Mater Sci Eng A 651:1–7. https://doi.org/10.1016/j.msea.2015.10.091

    Article  Google Scholar 

  182. Hadi S, Kiet Tieu A, Lu C, Zhu H (2013) A micro deep drawing of ARB processed aluminium foil AA1235. Int J Mater Prod Technol 47:175–187. https://doi.org/10.1504/IJMPT.2013.058973

    Article  Google Scholar 

  183. Yu HL, Kiet Tieu A, Hadi S, Lu C, Godbole AR (2015) High strength and ductility of ultrathin laminate foils using accumulative roll bonding and asymmetric rolling. Metall Mater Trans Phys Metall Mater Sci 46(2):869–879. https://doi.org/10.1007/s11661-014-2640-3

    Article  Google Scholar 

  184. Zhao J, Wang T, Jia F, Li Z, Zhou C, Huang Q, Jiang Z (2021) Experimental investigation on micro deep drawing of stainless steel foils with different microstructural characteristics. Chin J Mech Eng (English Edition) 34(1). https://doi.org/10.1186/s10033-021-00556-5

  185. Zhao J, Jiang Z, Wang Z, Sang S, Dobrzański LA, Yang M, Ma X, Wang Y (2022) An analysis of micro deep drawing of ferritic stainless steel 430 using crystal plasticity finite element method. J Mater Res Technol 20:2247–2261. https://doi.org/10.1016/J.JMRT.2022.07.105

    Article  Google Scholar 

  186. Li L, Qi YY, Ma XG, Jiang ZY, Manabe K, Lee CS, Zhao JW (2022) A study of the formability of stainless steel foils during micro deep drawing. IOP Conf Ser Mater Sci Eng 1270(1). https://doi.org/10.1088/1757-899X/1270/1/012030

  187. Tekkaya AE, Groche P, Kinsey BL, Wang ZG (2023) Stress superposition in metal forming. CIRP Ann 72(2). https://doi.org/10.1016/j.cirp.2023.04.090

  188. Sato H, Manabe K, Ito K, Wei D, Jiang Z (2015) Development of servo-type micro-hydromechanical deep-drawing apparatus and micro deep-drawing experiments of circular cups. J Mater Process Technol 224:233–239. https://doi.org/10.1016/j.jmatprotec.2015.05.014

    Article  Google Scholar 

  189. Koga N, Asaka M, Junlapen K (2007) Deep-drawing and ironing of 1050 aluminum sheets loaded with vibration using NC servo press machine. J Japan Inst Light Met 57(6):240–244. https://doi.org/10.2464/jilm.57.240

    Article  Google Scholar 

  190. Seo YH, Park CJ, Kim BH, Lee HJ, Lee NK (2012) Development of audio frequency vibration microforming system. Int J Precis Eng Manuf 13(5):789–794. https://doi.org/10.1007/s12541-012-0104-5

    Article  Google Scholar 

  191. Shao G, Li H, Zhan M (2021) A review on ultrasonic-assisted forming: mechanism, model, and process. Chin J Mech Eng 34(1). https://doi.org/10.1186/s10033-021-00612-0

  192. Huang YM, Wu YS, Huang JY (2014) The influence of ultrasonic vibration-assisted micro-deep drawing process. Int J Adv Manuf Technol 71:5–8. https://doi.org/10.1007/s00170-013-5553-1

    Article  Google Scholar 

  193. Bai Y, Yang M (2015) Deformation analysis of brass in micro compression test with presence of ultrasonic vibration. Int J Precis Eng Manuf 16(4):685–691. https://doi.org/10.1007/s12541-015-0091-4

    Article  Google Scholar 

  194. Zha CL, Chen W (2019) Theories and experiments on effects of acoustic energy field in micro-square cup drawing. Int J Adv Manuf Technol 104:9–12. https://doi.org/10.1007/s00170-019-04338-1

    Article  Google Scholar 

  195. Ikeuchi K, Wake Y, Wake T, Ikuta S, Shikazono N, Yanagimoti J (2011) Springback of Ultra Thin Stainless Steel Sheet after Cold and Warm Forming, in Proceedings of the 10th International Conference on Technology of Plasticity, G. Hirt and A. E. Tekkaya, Eds., Aachen, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. Weinheim, pp. 698–701

  196. Aoyama T, Shimizu T, Zheng Q, Yang M (2014) Effect of heating on springback in heat assisted microbending. Adv Mat Res 939:409–414. https://doi.org/10.4028/www.scientific.net/AMR.939.409

    Article  Google Scholar 

  197. Jiang Z, Zhao J, Lu H, Wei D, Manabe K, Zhao X, Zhang X, Wu D (2017) Influences of temperature and grain size on the material deformability in microforming process. IntJ Mater Form 10(5):753–764. https://doi.org/10.1007/s12289-016-1317-4

    Article  Google Scholar 

  198. Eichenhüller B, Egerer E, Engel U (2007) Microforming at elevated temperature - forming and material behaviour. Int J Adv Manuf Technol 33:1–2. https://doi.org/10.1007/s00170-006-0731-z

    Article  Google Scholar 

  199. Zheng Q, Shimizu T, Yang M (2015) Numerical analysis of temperature distribution and its optimization for thin foils in micro deep drawing assisted by resistance heating. Steel Res Int 86(8):869–876. https://doi.org/10.1002/srin.201400574

    Article  Google Scholar 

  200. Ambrogio G, Filice L, Palumbo G, Pinto S (2005) Prediction of formability extension in deep drawing when superimposing a thermal gradient. J Mater Process Technol 162–163. https://doi.org/10.1016/j.jmatprotec.2005.02.179

  201. Erhardt R, Schepp F, Schmoeckel D (1999) Micro forming with local part heating by laser irradiation in transparent tools, in Proceedings of the SheMet ’99, pp. 497–504

  202. Bayer A, Gillner A, Groche P, Erhardt R (2003) Laser-assisted forming of metallic micro-parts, in Fourth International Symposium on Laser Precision Microfabrication, SPIE, pp. 157–162. https://doi.org/10.1117/12.541079

  203. Magargee J, Morestin F, Cao J (2013) Characterization of flow stress for commercially pure titanium subjected to electrically assisted deformation. J Eng Mater Technol 135(4). https://doi.org/10.1115/1.4024394

  204. Perkins TA, Kronenberger TJ, Roth JT (2007) Metallic forging using electrical flow as an alternative to warm/hot working. J Manuf Sci Eng 129(1):84–94. https://doi.org/10.1115/1.2386164

    Article  Google Scholar 

  205. Wang X, Egea AJS, Xu J, Meng X, Wang Z, Shan D, Guo B, Cao J (2018) Current-induced ductility enhancement of a magnesium alloy AZ31 in uniaxial micro-tension below 373 K. Materials 12(1). https://doi.org/10.3390/ma12010111

  206. Bao J, Bai J, Lv S, Shan D, Guo B, Xu J (2020) Interactive effects of specimen size and current density on tribological behavior of electrically-assisted micro-forming in TC4 titanium alloy. Tribol Int 151. https://doi.org/10.1016/j.triboint.2020.106457

  207. Xie H, Dong X, Ai Z, Wang Q, Peng F, Liu K, Chen F, Wang. J (2016) Experimental investigation on electrically assisted cylindrical deep drawing of AZ31B magnesium alloy sheet. Int J Adv Manuf Technol 86:1–4. https://doi.org/10.1007/s00170-015-8246-0

    Article  Google Scholar 

  208. Hu Z, Huferath-Von Luepke S, Von Kopylow C, Vollertsen F (2010) Characteristic of wear behavior of micro deep drawing tools. AIP Conf Proc 1315:335–340. https://doi.org/10.1063/1.3552464

    Article  Google Scholar 

  209. Moghadam M, Suleiman MH, Christiansen P, Bay N (2017) Acoustic emission monitoring of the bending under tension test. Procedia Eng 207:1421–1426. https://doi.org/10.1016/j.proeng.2017.10.907

    Article  Google Scholar 

  210. Moghadam M, Nielsen CV, Christiansen P, Bay N (2018) Tool condition monitoring in strip reduction testing using acoustic emission, in 8th International Seminar on Precision Forging

  211. Tröber P, Demmel P, Hoffmann H, Golle R, Volk W (2017) On the influence of Seebeck coefficients on adhesive tool wear during sheet metal processing. CIRP Ann Manuf Technol 66:293–296. https://doi.org/10.1016/j.cirp.2017.04.116

    Article  Google Scholar 

  212. Groche P, Wu Y (2019) Inline observation of tool wear in deep drawing with thermoelectric and optical measurements. CIRP Ann Manuf Technol 68:567–570. https://doi.org/10.1016/j.cirp.2019.04.034

    Article  Google Scholar 

  213. Arinbjarnar Ú, Moske J, Nielsen CV (2024) Evaluation of in-line monitoring of micro-forming tribo-systems applying U-bending test principle. Unpublished

  214. Huferath S, von Luepke P, Huke C, von Kopylow, Bergmann RB (2012) Wear recording at micro deep drawing tools with comparative digital holography. J Eur Opt Soc 7. https://doi.org/10.2971/jeos.2012.12041

  215. Seven J, Heinrich L, Flosky H (2018) Inline tool wear measurement in lateral micro upsetting, in MATEC Web of Conferences, EDP Sciences, https://doi.org/10.1051/matecconf/201819015009

  216. Molitor DA, Kubik C, Hetfleisch RH, Groche P (2022) Workpiece image-based tool wear classification in blanking processes using deep convolutional neural networks. Prod Eng Res Devel 1–12. https://doi.org/10.1007/s11740-022-01113-2

  217. Agour M, Huke P, Kopylow Cv, Falldorf C, Rastogi PK, Hack E (2010) Shape measurement by means of phase retrieval using a spatial light modulator. AIP Conf Proc 1236:265–270. https://doi.org/10.1063/1.3426125

    Article  Google Scholar 

  218. Wang N, Kopylow CV, Falldorf C (2010) Rapid shape measurement of micro deep drawing parts by means of digital holographic contouring, in Proceedings of the 36th International MATADOR Conference, pp. 45–48. https://doi.org/10.1007/978-1-84996-432-6_10

  219. Simic A, Falldorf C, Bergmann RB (2016) Internal inspection of micro deep drawing parts using digital holography. in Digital Holography and three-dimensional imaging 2016. Optica Publishing Group, Heidelberg, Germany. doi: https://doi.org/10.1364/DH.2016.DW1H.3.

    Chapter  Google Scholar 

  220. Simic A, Freiheit H, Agour M, Falldorf C, Bergmann RB (2017) In-line quality control of micro parts using digital holography, in Holography: Advances and Modern Trends V, SPIE, https://doi.org/10.1117/12.2265780

  221. Agour M, Falldorf C, Bergmann RB (2018) Spatial multiplexing and autofocus in holographic contouring for inspection of micro-parts. Opt Express 26(22). https://doi.org/10.1364/oe.26.028576

  222. Costache EM, Nanu N, Chirita B, Brabie G (2013) Prediction and prevention of material cracking in the case of micro or milli drawn parts made from aluminium foils. Int J Mech Sci 69:125–140. https://doi.org/10.1016/j.ijmecsci.2013.02.001

    Article  Google Scholar 

  223. Brabie G, Costache EM, Nanu N, Chirita B (2013) Prediction and minimisation of sheet thickness variation during deep drawing of micro/milli parts. Int J Mech Sci 68:277–290. https://doi.org/10.1016/j.ijmecsci.2013.01.028

    Article  Google Scholar 

  224. Hu Z, Vollertsen F (2011) Investigation on the optimisation of the blank shape for micro deep drawing of rectangular parts. Steel Res Int, pp. 974–978

  225. Mahmood ZH, Irthiea IK, Ahmed AK (2020) Optimization of initial blank shape for flexible micro deep drawing of square parts. Mater Today Proc 20:555–559. https://doi.org/10.1016/j.matpr.2019.09.188

    Article  Google Scholar 

  226. Wang J, Fu MW, Ran J (2014) Analysis of the size effect on springback behavior in micro-scaled U-bending process of sheet metals. Adv Eng Mater 16(4):421–432. https://doi.org/10.1002/adem.201300275

    Article  Google Scholar 

  227. Luo L, Jiang Z, Wei D, Manabe K, Zhao X, Wu D, Furushima T (2016) Effects of surface roughness on micro deep drawing of circular cups with consideration of size effects. Finite Elem Anal Des 111:46–55. https://doi.org/10.1016/j.finel.2015.11.005

    Article  Google Scholar 

  228. Furushima T, Nakayama T, Sasaki K (2019) A new theoretical model of material inhomogeneity for prediction of surface roughening in micro metal forming. CIRP Ann 68(1):257–260. https://doi.org/10.1016/j.cirp.2019.04.057

    Article  Google Scholar 

  229. Wielage H, Hu Z, Vollertsen F (2012) Fracture behavior of thin foils. J Mater Process Technol 212(3):685–688. https://doi.org/10.1016/j.jmatprotec.2011.10.022

    Article  Google Scholar 

  230. Guo N, Wang J, Sun CY, Zhang YF, Fu MW (2020) Analysis of size dependent earing evolution in micro deep drawing of TWIP steel by using crystal plasticity modeling. Int J Mech Sci 165. https://doi.org/10.1016/j.ijmecsci.2019.105200

Download references

Funding

This study was funded by Independent Research Fund Denmark, grant number DFF – 0136-00159B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Úlfar Arinbjarnar.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arinbjarnar, Ú., Schumann, P., Moske, J. et al. A review of methods and effects for improving production robustness in industrial micro-deep drawing. Int J Mater Form 17, 31 (2024). https://doi.org/10.1007/s12289-024-01832-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-024-01832-0

Keywords

Navigation