Skip to main content

Advertisement

Log in

Analytical Appraisal of Hematogones in B-ALL MRD Assessment Using Multidimensional Dot-Plots by Multiparametric Flow Cytometry: A Critical Review and Update

  • REVIEW ARTICLE
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

The spectrum of benign B-cell precursors, known as hematogones (HGs), shows a significant morphological and immunophenotypic overlap with their malignant counterpart i.e. B-lymphoid blasts (BLBs). This results in a diagnostic dilemma in assessment of cases wherein there is a physiological preponderance of HGs and also poses a significant challenge in measurable residual disease assessment in B-cell acute lymphoblastic leukaemia. Consequently, expression patterns of various immunophenotypic markers are considered the most important tool in identification and delineation of HGs from BLBs. However, certain aspects of B-cell compartment evaluation by flow cytometric immunophenotyping and its relevance in clinical scenarios is yet to be defined precisely. This review summarizes current flowcytometric data on HGs and its discrimination from BLBs based on thorough review of literature and evaluation of in-house data. Furthermore, it focuses on the utility of an additional analytical tool i.e., radar plot for a comprehensive representation of various subsets of the B-cell compartment and their differentiation from BLBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rimsza LM, Larson RS, Winter SS et al (2000) Benign hematogone-rich lymphoid proliferations can be distinguished from B-lineage acute lymphoblastic leukemia by integration of morphology, immunophenotype, adhesion molecule expression, and architectural features. Am J Clin Pathol 114(1):66–75. https://doi.org/10.1309/LXU4-Q7Q9-3YAB-4QE0

    Article  CAS  PubMed  Google Scholar 

  2. Muehleck SD, McKenna RW, Gale PF, Brunning RD (1983) Terminal deoxynucleotidyl transferase (TdT)-positive cells in bone marrow in the absence of hematologic malignancy. Am J Clin Pathol 79(3):277–284. https://doi.org/10.1093/ajcp/79.3.277

    Article  CAS  PubMed  Google Scholar 

  3. Cornelius AS, Campbell D, Schwartz E, Poncz M (1991) Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura. Am J Pediatr Hematol Oncol 13(1):57–61. https://doi.org/10.1097/00043426-199121000-00014

    Article  CAS  PubMed  Google Scholar 

  4. Sandhaus LM, Chen TL, Ettinger LJ, Hirst-Allen A, Mehta K, Raskova J (1993) Significance of increased proportion of CD10-positive cells in nonmalignant bone marrows of children. Am J Pediatr Hematol Oncol 15(1):65–70. https://doi.org/10.1097/00043426-199302000-00007

    Article  CAS  PubMed  Google Scholar 

  5. van Wering ER, van der Linden-Schrever BE, Szczepański T et al (2000) Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol 110(1):139–146. https://doi.org/10.1046/j.1365-2141.2000.02143.x

    Article  PubMed  Google Scholar 

  6. Motley D, Meyer MP, King RA, Naus GJ (1996) Determination of lymphocyte immunophenotypic values for normal full-term cord blood. Am J Clin Pathol 105(1):38–43. https://doi.org/10.1093/ajcp/105.1.38

    Article  CAS  PubMed  Google Scholar 

  7. McKenna RW, Washington LT, Aquino DB, Picker LJ, Kroft SH (2001) Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood 98(8):2498–2507. https://doi.org/10.1182/blood.V98.8.2498

    Article  CAS  PubMed  Google Scholar 

  8. Lúcio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, Orfao A, Janossy G, van Dongen JJ, San Miguel JF (1999) Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 13(3):419–427. https://doi.org/10.1038/sj.leu.2401279

    Article  PubMed  Google Scholar 

  9. McKenna RW, Asplund SL, Kroft SH (2004) Immunophenotypic analysis of hematogones (B-lymphocyte precursors) and neoplastic lymphoblasts by 4-color flow cytometry. Leuk Lymphoma 45(2):277–285. https://doi.org/10.1080/1042819031000151950

    Article  PubMed  Google Scholar 

  10. Theunissen PMJ, Sedek L, De Haas V, Szczepanski T, Van Der Sluijs A, Mejstrikova E, Nováková M, Kalina T, Lecrevisse Q, Orfao A, Lankester AC, van Dongen JJM, Van Der Velden VHJ, EuroFlow Consortium (2017) Detailed immunophenotyping of B-cell precursors in regenerating bone marrow of acute lymphoblastic leukaemia patients: implications for minimal residual disease detection. Br J Haematol 178(2):257–266. https://doi.org/10.1111/bjh.14682

    Article  CAS  PubMed  Google Scholar 

  11. Das N, Gupta R, Gupta SK, Bakhshi S, Seth R, Kumar C, Rai S, Singh S, Prajapati VK, Gogia A, Sahoo RK, Sharma A, Kumar L (2021) Critical evaluation of the utility of pre- and post-therapy immunophenotypes in assessment of measurable residual disease in B-ALL. Ann Hematol 100(10):2487–2500. https://doi.org/10.1007/s00277-021-04580-2

    Article  CAS  PubMed  Google Scholar 

  12. Babusíková O, Zelezníková T, Kirschnerová G, Kankuri E (2008) Hematogones in acute leukemia during and after therapy. Leuk Lymphoma 49(10):1935–1944. https://doi.org/10.1080/10428190701817274

    Article  PubMed  Google Scholar 

  13. Chatterjee G, Sriram H, Ghogale S, Deshpande N, Khanka T, Panda D, Pradhan SN, Girase K, Narula G, Dhamane C, Malik NR, Banavali S, Patkar NV, Gujral S, Subramanian PG, Tembhare PR (2021) Immunophenotypic shift in the B-cell precursors from regenerating bone marrow samples: a critical consideration for measurable residual disease assessment in B-lymphoblastic leukemia. Cytometry B Clin Cytom 100(4):434–445. https://doi.org/10.1002/cyto.b.21951

    Article  CAS  PubMed  Google Scholar 

  14. Liao H, Zheng Q, Jin Y, Chozom T, Zhu Y, Liu L, Jiang N (2019) The prognostic significance of hematogones and CD34+ myeloblasts in bone marrow for adult B-cell lymphoblastic leukemia without minimal residual disease. Sci Rep 9(1):19722. https://doi.org/10.1038/s41598-019-56126-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Peng L, Dai Q, Ye L, Chen L, Chen Q, Lai C, Jiang Y, Zhang G (2016) Clinical value to quantitate hematogones in Chinese childhood acute lymphoblastic leukemia by flow cytometry analysis. Int J Lab Hematol 38(3):246–255. https://doi.org/10.1111/ijlh.12476

    Article  PubMed  Google Scholar 

  16. Ishio T, Sugita J, Tateno T, Hidaka D, Hayase E, Shiratori S, Okada K, Goto H, Onozawa M, Nakagawa M, Hashimoto D, Kahata K, Fujimoto K, Endo T, Kondo T, Teshima T (2018) Hematogones predict better outcome in allogeneic hematopoietic stem cell transplantation irrespective of graft sources. Biol Blood Marrow Transplant 24(10):1990–1996. https://doi.org/10.1016/j.bbmt.2018.06.011

    Article  CAS  PubMed  Google Scholar 

  17. Zheng J, Du W, Yao J, You Y, Li W, He Y, Li X, Liu W, Wu Y, Hu Y, Jin R, Zou P, Huang S, Hu Y, Zhang M (2013) Analysis of hematogones in bone marrow from acute myeloid leukaemia cases post therapy. Eur J Clin Invest 43(11):1140–1146. https://doi.org/10.1111/eci.12151

    Article  PubMed  Google Scholar 

  18. Honebrink T, Dayton V, Burke MJ, Larsen K, Cao Q, Brunstein C, Weisdorf D, Miller JS, Wagner JE, Verneris MR (2012) Impact of bone marrow hematogones on umbilical cord blood transplantation outcomes in patients with acute myeloid leukemia. Biol Blood Marrow Transplant 18(6):930–936. https://doi.org/10.1016/j.bbmt.2011.11.015

    Article  PubMed  Google Scholar 

  19. Li L, Fu R, Zhang T, Xie X, Liu J, Tao J, Song J, Liu H, Zhang W, Lu W, Shao Z (2016) Hematogones: a sensitive prognostic factor for Chinese adult patients with acute myeloid leukemia. Curr Oncol 23(2):e123–e130. https://doi.org/10.3747/co.23.2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santiago V, Lazaryan A, McClune B, McKenna RW, Courville EL (2018) Quantification of marrow hematogones following autologous stem cell transplant in adult patients with plasma cell myeloma or diffuse large B-cell lymphoma and correlation with outcome. Leuk Lymphoma 59(4):958–966. https://doi.org/10.1080/10428194.2017.1352094

    Article  CAS  PubMed  Google Scholar 

  21. Gajendra S, Misra R, Dorwal P, Sharma R, Sachdev R (2017) Significant haematogone proliferation mimicking relapse in acute lymphoblastic leukaemia on therapy. J Clin Diagn Res 11(2):ED01–ED03. https://doi.org/10.7860/JCDR/2017/23650.9190

    Article  PubMed  PubMed Central  Google Scholar 

  22. Horna P, Pantazopoulos P, Lancet JE, Moscinski LC, Zhang L (2014) Prominent hematogone hyperplasia in BCR-ABL1-positive chronic myelogenous leukemia: mimicking recurrent B-lymphoid blast crisis. Leuk Lymphoma 55(8):1952–1954. https://doi.org/10.3109/10428194.2013.869330

    Article  PubMed  Google Scholar 

  23. Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, Sobral da Costa E, Kotrová M, Novakova M, Sonneveld E, Buracchi C, Bonaccorso P, Oliveira E, Te Marvelde JG, Szczepanski T, Lhermitte L, Hrusak O, Lecrevisse Q, Grigore GE, Froňková E, Trka J, Brüggemann M, Orfao A, van Dongen JJ, van der Velden VH, EuroFlow Consortium (2017) Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 129(3):347–357. https://doi.org/10.1182/blood-2016-07-726307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coustan-Smith E, Song G, Clark C, Key L, Liu P, Mehrpooya M, Stow P, Su X, Shurtleff S, Pui CH, Downing JR, Campana D (2011) New markers for minimal residual disease detection in acute lymphoblastic leukemia. Blood 117(23):6267–6276. https://doi.org/10.1182/blood-2010-12-324004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tembhare PR, Ghogale S, Ghatwai N, Badrinath Y, Kunder N, Patkar NV, Bibi AR, Chatterjee G, Arora B, Narula G, Banawali S, Deshpande N, Amare P, Gujral S, Subramanian PG (2018) Evaluation of new markers for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia: CD73 and CD86 are the most relevant new markers to increase the efficacy of MRD. Cytom B Clin Cytom 94(1):100–111. https://doi.org/10.1002/cyto.b.21486

    Article  CAS  Google Scholar 

  26. Mikhailova E, Semchenkova A, Illarionova O, Kashpor S, Brilliantova V, Zakharova E, Zerkalenkova E, Zangrando A, Bocharova N, Shelikhova L, Diakonova Y, Zhogov V, Khismatullina R, Molostova O, Buldini B, Raykina E, Larin S, Olshanskaya Y, Miakova N, Novichkova G, Maschan M, Popov AM (2021) Relative expansion of CD19-negative very-early normal B-cell precursors in children with acute lymphoblastic leukaemia after CD19 targeting by blinatumomab and CAR-T cell therapy: implications for flow cytometric detection of minimal residual disease. Br J Haematol 193(3):602–612. https://doi.org/10.1111/bjh.17382

    Article  CAS  PubMed  Google Scholar 

  27. Cherian S, Stetler-Stevenson M (2018) Flow cytometric monitoring for residual disease in B lymphoblastic leukemia post T cell engaging targeted therapies. Curr Protoc Cytom 86(1):e44. https://doi.org/10.1002/cpcy.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cherian S, Miller V, McCullouch V, Dougherty K, Fromm JR, Wood BL (2018) A novel flow cytometric assay for detection of residual disease in patients with B-lymphoblastic leukemia/lymphoma post anti-CD19 therapy. Cytom B Clin Cytom 94(1):112–120. https://doi.org/10.1002/cyto.b.21482

    Article  CAS  Google Scholar 

  29. Singh M, Bhatia P, Shandilya JK, Rawat A, Varma N, Sachdeva MS, Trehan A, Bansal D, Jain R, Totadri S (2018) Low expression of leucocyte associated immunoglobulin like receptor-1 (LAIR-1/CD305) in a cohort of pediatric acute lymphoblastic leukemia cases. Asian Pac J Cancer Prev 19(11):3131–3135. https://doi.org/10.31557/APJCP.2018.19.11.3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Giuseppe JA, Fuller SG, Borowitz MJ (2009) Overexpression of CD49f in precursor B-cell acute lymphoblastic leukemia: potential usefulness in minimal residual disease detection. Cytom B Clin Cytom 76(2):150–155. https://doi.org/10.1002/cyto.b.20440

    Article  Google Scholar 

  31. Victoria C, Diamanti P, Blair A (2012) Assessing CD97 and CD99 as markers of leukaemia initiating cells in pediatric ALL. Blood (Am Soc Hematol) 120:1882. https://doi.org/10.1182/blood.V120.21.1882.1882

    Article  Google Scholar 

  32. Sherif LM, Azab MM, Al-Akad GM, Zakaria M, Atfy M, Sorour SM (2017) Cluster of differentiation 97 as a biomarker for the detection of minimal residual disease in common acute lymphoblastic leukemia. Egypt J Haematol 42:81–87

    Article  Google Scholar 

  33. Shaver AC, Greig BW, Mosse CA, Seegmiller AC (2015) B-ALL minimal residual disease flow cytometry: an application of a novel method for optimization of a single-tube model. Am J Clin Pathol 143(5):716–724. https://doi.org/10.1309/AJCPOOJRAVUN75GD

    Article  CAS  PubMed  Google Scholar 

  34. Cherian S, Soma LA (2021) How i diagnose minimal/measurable residual disease in b lymphoblastic leukemia/lymphoma by flow cytometry. Am J Clin Pathol 155(1):38–54. https://doi.org/10.1093/ajcp/aqaa242

    Article  PubMed  Google Scholar 

  35. Correia RP, Bento LC, de Sousa FA, Barroso RS, Campregher PV, Bacal NS (2021) How i investigate minimal residual disease in acute lymphoblastic leukemia. Int J Lab Hematol 43(3):354–363. https://doi.org/10.1111/ijlh.13463

    Article  PubMed  Google Scholar 

  36. Mak AB, Nixon AM, Moffat J (2012) The mixed lineage leukemia (MLL) fusion-associated gene AF4 promotes CD133 transcription. Cancer Res 72(8):1929–1934. https://doi.org/10.1158/0008-5472.CAN-11-3589

    Article  CAS  PubMed  Google Scholar 

  37. Broome HE, Rassenti LZ, Wang HY, Meyer LM, Kipps TJ (2011) ROR1 is expressed on hematogones (non-neoplastic human B-lymphocyte precursors) and a minority of precursor-B acute lymphoblastic leukemia. Leuk Res 35(10):1390–1394. https://doi.org/10.1016/j.leukres.2011.06.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mirkowska P, Hofmann A, Sedek L, Slamova L, Mejstrikova E, Szczepanski T, Schmitz M, Cario G, Stanulla M, Schrappe M, van der Velden VH, Bornhauser BC, Wollscheid B, Bourquin JP (2013) Leukemia surfaceome analysis reveals new disease-associated features. Blood 121(25):e149–e159. https://doi.org/10.1182/blood-2012-11-468702

    Article  CAS  PubMed  Google Scholar 

  39. Chen X, Wood BL (2017) How do we measure MRD in ALL and how should measurements affect decisions. Re: treatment and prognosis? Best Pract Res Clin Haematol 30(3):237–248. https://doi.org/10.1016/j.beha.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Tinnevelt GH, Kokla M, Hilvering B, van Staveren S, Folcarelli R, Xue L, Bloem AC, Koenderman L, Buydens LMC, Jansen JJ (2017) Novel data analysis method for multicolour flow cytometry links variability of multiple markers on single cells to a clinical phenotype. Sci Rep 7(1):5471. https://doi.org/10.1038/s41598-017-05714-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lugli E, Roederer M, Cossarizza A (2010) Data analysis in flow cytometry: the future just started. Cytometry A 77(7):705–713. https://doi.org/10.1002/cyto.a.20901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Costa ES, Pedreira CE, Barrena S, Lecrevisse Q, Flores J, Quijano S, Almeida J, del Carmen G-M, Bottcher S, Van Dongen JJ, Orfao A (2011) Automated pattern-guided principal component analysis vs expert-based immunophenotypic classification of B-cell chronic lymphoproliferative disorders: a step forward in the standardization of clinical immunophenotyping. Leukemia 25(2):385. https://doi.org/10.1038/leu.2010.160

    Article  PubMed Central  Google Scholar 

  43. Jansen JJ, Hilvering B, Doel AD, Pickkers P, Koenderman L, Buydens LMC, Brink OF (2016) FLOOD: flow cytometric orthogonal orientation for diagnosis. Chemom Intell Lab Syst 151:126–135. https://doi.org/10.1016/j.chemolab.2015.12.001

    Article  CAS  Google Scholar 

  44. Amirel AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, Shenfeld DK, Krishnaswamy S, Nolan GP, Pe’er D (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol 31(6):545–552. https://doi.org/10.1038/nbt.2594

    Article  CAS  Google Scholar 

  45. McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: uniform manifold approximation and projection. J Open Source Softw 3:861. https://doi.org/10.21105/joss.00861

    Article  Google Scholar 

  46. Reiter M, Diem M, Schumich A, Maurer-Granofszky M, Karawajew L, Rossi JG, Ratei R, Groeneveld-Krentz S, Sajaroff EO, Suhendra S, Kampel M, Dworzak MN, International Berlin-Frankfurt-Münster (iBFM)-FLOW-network and the AutoFLOW consortium (2019) Automated flow cytometric MRD assessment in childhood acute B-lymphoblastic leukemia using supervised machine learning. Cytometry A 95(9):966–975. https://doi.org/10.1002/cyto.a.23852

    Article  PubMed  Google Scholar 

  47. Shopsowitz KE, Liu L, Setiadi A, Al-Bakri M, Vercauteren S (2022) Machine learning optimized multiparameter radar plots for B-cell acute lymphoblastic leukemia minimal residual disease analysis. Cytom B Clin Cytom. https://doi.org/10.1002/cyto.b.22084

    Article  Google Scholar 

  48. Gupta M, Jafari K, Rajab A, Wei C, Mazur J, Tierens A, Hyjek E, Musani R, Porwit A (2021) Radar plots facilitate differential diagnosis of acute promyelocytic leukemia and NPM1+ acute myeloid leukemia by flow cytometry. Cytom B Clin Cytom 100(4):409–420. https://doi.org/10.1002/cyto.b.21979

    Article  CAS  Google Scholar 

  49. Gustafson MP, Lin Y, Maas ML, Van Keulen VP, Johnston PB, Peikert T, Gastineau DA, Dietz AB (2015) A method for identification and analysis of non-overlapping myeloid immunophenotypes in humans. PLoS ONE 10(3):e0121546. https://doi.org/10.1371/journal.pone.0121546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jafari K, Tierens A, Rajab A, Musani R, Schuh A, Porwit A (2018) Visualization of cell composition and maturation in the bone marrow using 10-color flow cytometry and radar plots. Cytom B Clin Cytom 94(2):219–229. https://doi.org/10.1002/cyto.b.21519

    Article  Google Scholar 

  51. Kárai B, Tisza K, Eperjesi O, Nagy AC, Ujfalusi A, Kelemen Á, Szegedi I, Kiss C, Kappelmayer J, Hevessy Z (2021) A novel method for the evaluation of bone marrow samples from patients with pediatric B-cell acute lymphoblastic leukemia-multidimensional flow cytometry. Cancers (Basel) 13(20):5044. https://doi.org/10.3390/cancers13205044

    Article  CAS  PubMed  Google Scholar 

  52. Violidaki D, Axler O, Jafari K, Bild F, Nilsson L, Mazur J, Ehinger M, Porwit A (2020) Analysis of erythroid maturation in the nonlysed bone marrow with help of radar plots facilitates detection of flow cytometric aberrations in myelodysplastic syndromes. Cytom B Clin Cytom 98(5):399–411. https://doi.org/10.1002/cyto.b.21931

    Article  CAS  Google Scholar 

  53. Borowitz MJ, Wood BL, Devidas M, Loh ML, Raetz EA, Salzer WL, Nachman JB, Carroll AJ, Heerema NA, Gastier-Foster JM, Willman CL, Dai Y, Winick NJ, Hunger SP, Carroll WL, Larsen E (2015) Prognostic significance of minimal residual disease in high-risk B-ALL: a report from Children’s Oncology Group study AALL0232. Blood 126(8):964–971. https://doi.org/10.1182/blood-2015-03-633685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge all the technical staff of flow cytometry Laboratory, Dr. BRAIRCH, AIIMS.

Author information

Authors and Affiliations

Authors

Contributions

RG conceived and designed the review study. All three authors wrote and approved the manuscript.

Corresponding author

Correspondence to Ritu Gupta.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Supplementary file2 (TIFF 16636 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, N., Gajendra, S. & Gupta, R. Analytical Appraisal of Hematogones in B-ALL MRD Assessment Using Multidimensional Dot-Plots by Multiparametric Flow Cytometry: A Critical Review and Update. Indian J Hematol Blood Transfus 40, 12–24 (2024). https://doi.org/10.1007/s12288-023-01696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-023-01696-5

Keywords

Navigation