Skip to main content

Advertisement

Log in

Usefulness of new shear wave elastography in early predicting the efficacy of neoadjuvant chemotherapy for patients with breast cancer: where and when to measure is optimal?

  • Original Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the diagnosis performance of new shear wave elastography (sound touch elastography, STE) in the prediction of neoadjuvant chemotherapy (NAC) response at an early stage in breast cancer patients and to determine the optimal measurement locations around the lesion in different ranges.

Methods

One hundred and eight patients were analyzed in this prospective study from November 2018 to December 2020. All patients completed NAC treatment and underwent STE examination at three time points [the day before NAC (t0); the day before the second course (t1); the day before third course (t2)]. The stiffness of the whole lesion (G), 1-mm shell (S1) and 2-mm shell (S2) around the lesion was expressed by STE parameters. The relative changes (∆stiffness) of STE parameters after the first and second course of NAC were calculated and shown as the variables [Δ(t1) and Δ(t2)]. The diagnostic accuracy of STE was evaluated by means of receiver operating characteristic curve analysis.

Results

The ∆stiffness (%) including ∆Gmean(t2), ∆S1mean(t2) and ∆S2mean(t2) all showed significant differences between pathological complete response (pCR) and non-pCR groups. ∆S2mean(t2) displayed the best predictive performance for pCR (AUC = 0.842) with an ideal ∆stiffness threshold value − 26%.

Conclusions

Measuring the relative changes in the stiffness of surrounding tissue or entire lesion with STE holds promise for effectively predicting the response to NAC at its early stage for breast cancer patients and ∆stiffness of shell 2 mm after the second course of NAC may be a potential prediction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article  PubMed  Google Scholar 

  2. Gradishar WJ, Anderson BO, Abraham J, Aft R, Agnese D, Allison KH, et al. Breast cancer, version 3.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2020;18:452–78.

    Article  CAS  Google Scholar 

  3. Brackstone M, Fletcher GG, Dayes IS, Madarnas Y, SenGupta SK, Verma S. Locoregional therapy of locally advanced breast cancer: a clinical practice guideline. Curr Oncol. 2015;22:S54–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baselga J, Campone M, Piccart M, Burris HR, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366:520–9.

    Article  CAS  PubMed  Google Scholar 

  5. von Minckwitz G, Blohmer JU, Costa SD, Denkert C, Eidtmann H, Eiermann W, et al. Response-guided neoadjuvant chemotherapy for breast cancer. J Clin Oncol. 2013;31:3623–30.

    Article  Google Scholar 

  6. Bufi E, Belli P, Di Matteo M, Terribile D, Franceschini G, Nardone L, et al. Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction to response to neoadjuvant treatment. Eur J Radiol. 2014;83:1631–8.

    Article  PubMed  Google Scholar 

  7. Li W, Arasu V, Newitt DC, Jones EF, Wilmes L, Gibbs J, et al. Effect of MR imaging contrast thresholds on prediction of neoadjuvant chemotherapy response in breast cancer subtypes: a subgroup analysis of the ACRIN 6657/I-SPY 1 trial. Tomography. 2016;2:378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Gong G, Cui Y, Li R. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. J Magn Reson Imaging. 2016;44:1107–15.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Junker D, De Zordo T, Quentin M, Ladurner M, Bektic J, Horniger W, et al. Real-time elastography of the prostate. Biomed Res Int. 2014;2014:180804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Faruk T, Islam MK, Arefin S, Haq MZ. The journey of elastography: background, current status, and future possibilities in breast cancer diagnosis. Clin Breast Cancer. 2015;15:313–24.

    Article  PubMed  Google Scholar 

  11. Bayat M, Denis M, Gregory A, Mehrmohammadi M, Kumar V, Meixner D, et al. Diagnostic features of quantitative comb-push shear elastography for breast lesion differentiation. PLoS One. 2017;12:e172801.

    Google Scholar 

  12. Lee DH, Lee ES, Lee JY, Bae JS, Kim H, Lee KB, et al. Two-dimensional-shear wave elastography with a propagation map: prospective evaluation of liver fibrosis using histopathology as the reference standard. Korean J Radiol. 2020;21:1317–25.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cantisani V, David E, Grazhdani H, Rubini A, Radzina M, Dietrich CF, et al. Prospective evaluation of semiquantitative strain ratio and quantitative 2D ultrasound shear wave elastography (SWE) in association with TIRADS classification for thyroid nodule characterization. Ultraschall Med. 2019;40:495–503.

    Article  PubMed  Google Scholar 

  14. Wildeboer RR, Mannaerts CK, van Sloun R, Budaus L, Tilki D, Wijkstra H, et al. Automated multiparametric localization of prostate cancer based on B-mode, shear-wave elastography, and contrast-enhanced ultrasound radiomics. Eur Radiol. 2020;30:806–15.

    Article  PubMed  Google Scholar 

  15. Cantisani V, David E, Barr RG, Radzina M, de Soccio V, Elia D, et al. US-elastography for breast lesion characterization: prospective comparison of US BIRADS, strain elastography and shear wave elastography. Ultraschall Med. 2021;42:533–40.

    Article  PubMed  Google Scholar 

  16. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239:341–50.

    Article  PubMed  Google Scholar 

  17. Ulrich TA, de Juan PE, Kumar S. The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Res. 2009;69:4167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, Walsh S, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.

    Article  CAS  PubMed  Google Scholar 

  19. Corben AD, Abi-Raad R, Popa I, Teo CH, Macklin EA, Koerner FC, et al. Pathologic response and long-term follow-up in breast cancer patients treated with neoadjuvant chemotherapy: a comparison between classifications and their practical application. Arch Pathol Lab Med. 2013;137:1074–82.

    Article  PubMed  Google Scholar 

  20. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    Article  CAS  PubMed  Google Scholar 

  21. Sandrin L, Tanter M, Catheline S, Fink M. Shear modulus imaging with 2-D transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:426–35.

    Article  PubMed  Google Scholar 

  22. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139:891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Tan X, Zhang X, Kang Y, Li J, Ren W, et al. Efficacy of shear-wave elastography versus dynamic optical breast imaging for predicting the pathological response to neoadjuvant chemotherapy in breast cancer. Eur J Radiol. 2020;129:109098.

    Article  PubMed  Google Scholar 

  24. Yang H, Xu Y, Zhao Y, Yin J, Chen Z, Huang P. The role of tissue elasticity in the differential diagnosis of benign and malignant breast lesions using shear wave elastography. BMC Cancer. 2020;20:930.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou J, Zhan W, Chang C, Zhang X, Jia Y, Dong Y, et al. Breast lesions: evaluation with shear wave elastography, with special emphasis on the “stiff rim” sign. Radiology. 2014;272:63–72.

    Article  PubMed  Google Scholar 

  26. Maier AM, Heil J, Harcos A, Sinn HP, Rauch G, Uhlmann L, et al. Prediction of pathological complete response in breast cancer patients during neoadjuvant chemotherapy: Is shear wave elastography a useful tool in clinical routine? Eur J Radiol. 2020;128:109025.

    Article  PubMed  Google Scholar 

  27. Fernandes J, Sannachi L, Tran WT, Koven A, Watkins E, Hadizad F, et al. Monitoring breast cancer response to neoadjuvant chemotherapy using ultrasound strain elastography. Transl Oncol. 2019;12:1177–84.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhang X, Liang M, Yang Z, Zheng C, Wu J, Ou B, et al. Deep learning-based radiomics of B-mode ultrasonography and shear-wave elastography: improved performance in breast mass classification. Front Oncol. 2020;10:1621.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Katyan A, Mittal MK, Mani C, Mandal AK. Strain wave elastography in response assessment to neo-adjuvant chemotherapy in patients with locally advanced breast cancer. Br J Radiol. 2019;92:20180515.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Falou O, Sadeghi-Naini A, Prematilake S, Sofroni E, Papanicolau N, Iradji S, et al. Evaluation of neoadjuvant chemotherapy response in women with locally advanced breast cancer using ultrasound elastography. Transl Oncol. 2013;6:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ma Y, Zhang S, Li J, Li J, Kang Y, Ren W. Comparison of strain and shear-wave ultrasounic elastography in predicting the pathological response to neoadjuvant chemotherapy in breast cancers. Eur Radiol. 2017;27:2282–91.

    Article  PubMed  Google Scholar 

  32. Ma Y, Zhang S, Zang L, Li J, Li J, Kang Y, et al. Combination of shear wave elastography and Ki-67 index as a novel predictive modality for the pathological response to neoadjuvant chemotherapy in patients with invasive breast cancer. Eur J Cancer. 2016;69:86–101.

    Article  PubMed  Google Scholar 

  33. Giussani M, Merlino G, Cappelletti V, Tagliabue E, Daidone MG. Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression. Semin Cancer Biol. 2015;35:3–10.

    Article  CAS  PubMed  Google Scholar 

  34. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH, Majeski HE, et al. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat Cell Biol. 2015;17:678–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Oskarsson T. Extracellular matrix components in breast cancer progression and metastasis. Breast. 2013;22(Suppl 2):S66–72.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China [2018YFC0114900], the Development Project of National Major Scientific Research Instrument [82027803], the National Natural Science Foundation of China [81971623], Key Project of Natural Science Foundation of Zhejiang Province [LZ20H180001], the Major Research Plan of the National Natural Science Foundation of China [91630311], Zhejiang Society Joint Foundation for Mathematical Medicine [LSY19H180015] and the Natural Science Foundation of Zhejiang Province [SZ20H180002].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-An Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, JH., He, C., Zhao, QY. et al. Usefulness of new shear wave elastography in early predicting the efficacy of neoadjuvant chemotherapy for patients with breast cancer: where and when to measure is optimal?. Breast Cancer 29, 478–486 (2022). https://doi.org/10.1007/s12282-021-01327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-021-01327-9

Keywords

Navigation