Skip to main content

Advertisement

Log in

Breast cancer screening for women at high risk: review of current guidelines from leading specialty societies

  • Special Feature
  • High-risk screening: up-to-date
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

The purpose of this article is to overview the existing breast cancer screening guidelines for women at high risk from world-leading specialty societies. Accumulation of evidence and development of accessible genetic testing strategies have changed the idea of breast cancer screening for high-risk women. Personalized tailor-made screening adjusted for risk factors has been conducted in accordance with guidelines. The use of imaging modalities other than mammography including contrast-enhanced MRI and other various strategies for improving screening are discussed. The present review also mentions the existing challenges in high-risk screening and the latest information based on two large-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

Atypical ductal hyperplasia

ALH:

Atypical lobular hyperplasia

CDR:

Cancer detection rate

DBT:

Digital breast tomosynthesis

DCE:

Dynamic contrast-enhanced

DCIS:

Ductal carcinoma in situ

DM:

Digital mammography

LCIS:

Lobular carcinoma in situ

MRI:

Magnetic resonance imaging

References

  1. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353:1784–92.

    Article  CAS  PubMed  Google Scholar 

  2. Njor S, Nyström L, Moss S, Paci E, Broeders M, Segnan N, et al. Breast cancer mortality in mammographic screening in Europe: a review of incidence-based mortality studies. J Med Screen. 2012;19(Suppl 1):33–41.

    Article  PubMed  Google Scholar 

  3. Independent UK Panel on Breast Cancer Screening. The benefits and harms of breast cancer screening: an independent review. Lancet. 2012;380:1778–866.

    Article  Google Scholar 

  4. Gøtzsche PC. Time to stop mammography screening? Can Med Assoc J. 2011;183:1957–8.

    Article  Google Scholar 

  5. Antoniou A, Pharoah PDP, Narod S, Risch HA, Eyfjord JE, Hopper JL, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72:1117–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips K-A, Mooij TM, Roos-Blom M-J, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317:2402–16.

    Article  CAS  PubMed  Google Scholar 

  7. US Preventive Services Task Force, Owens DK, Davidson KW, Krist AH, Barry MJ, Cabana M, et al. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US preventive services task force recommendation statement. JAMA. 2019;322:652–65.

    Article  Google Scholar 

  8. Gilpin CA, Carson N, Hunter AG. A preliminary validation of a family history assessment form to select women at risk for breast or ovarian cancer for referral to a genetics center. Clin Genet. 2000;58:299–308.

    Article  CAS  PubMed  Google Scholar 

  9. Evans DGR, Eccles DM, Rahman N, Young K, Bulman M, Amir E, et al. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004;41:474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellcross CA, Lemke AA, Pape LS, Tess AL, Meisner LT. Evaluation of a breast/ovarian cancer genetics referral screening tool in a mammography population. Genet Med. 2009;11:783–9.

    Article  PubMed  Google Scholar 

  11. Hoskins KF, Zwaagstra A, Ranz M. Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening. Cancer. 2006;107:1769–76.

    Article  PubMed  Google Scholar 

  12. Ashton-Prolla P, Giacomazzi J, Schmidt AV, Roth FL, Palmero EI, Kalakun L, et al. Development and validation of a simple questionnaire for the identification of hereditary breast cancer in primary care. BMC Cancer. 2009;9:283.

    Article  PubMed  PubMed Central  Google Scholar 

  13. IBIS Breast Cancer Risk Evaluation Tool [Internet]. [cited 2020 Mar 3]. https://www.ems-trials.org/riskevaluator/

  14. CancerGene with BRCAPRO, MMRpro, PancPRO, and MelaPRO [Internet]. [cited 2020 Mar 3]. https://www4.utsouthwestern.edu/breasthealth/cagene/

  15. Breast Cancer Risk Assessment Tool (Gail model) [Internet]. [cited 2020 Mar 3]. https://bcrisktool.cancer.gov/

  16. Claus EB, Risch N, Thompson WD. Autosomal dominant inheritance of early-onset breast cancer. Implic Risk Predict Cancer. 1994;73:643–51.

    CAS  Google Scholar 

  17. Lee AJ, Cunningham AP, Kuchenbaecker KB, Mavaddat N, Easton DF, Antoniou AC, et al. BOADICEA breast cancer risk prediction model: updates to cancer incidences, tumour pathology and web interface. Br J Cancer. 2014;110:535–45.

    Article  CAS  PubMed  Google Scholar 

  18. Mulder RL, Kremer LCM, Hudson MM, Bhatia S, Landier W, Levitt G, et al. Recommendations for breast cancer surveillance for female survivors of childhood, adolescent, and young adult cancer given chest radiation: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2013;14:e621–e629629.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Veiga LH, Curtis RE, Morton LM, Withrow DR, Howell RM, Smith SA, et al. Association of breast cancer risk after childhood cancer with radiation dose to the breast and anthracycline use: a report from the childhood cancer survivor study. JAMA Pediatr 2019

  20. Inskip PD, Robison LL, Stovall M, Smith SA, Hammond S, Mertens AC, et al. Radiation dose and breast cancer risk in the childhood cancer survivor study. J Clin Oncol. 2009;27:3901–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Henderson TO, Amsterdam A, Bhatia S, Hudson MM, Meadows AT, Neglia JP, et al. Systematic review: surveillance for breast cancer in women treated with chest radiation for childhood, adolescent, or young adult cancer. Ann Intern Med. 2010;152(444–55):W144.

    Google Scholar 

  22. Komoike Y, Akiyama F, Iino Y, Ikeda T, Akashi-Tanaka S, Ohsumi S, et al. Ipsilateral breast tumor recurrence (IBTR) after breast-conserving treatment for early breast cancer: risk factors and impact on distant metastases. Cancer. 2006;106:35–41.

    Article  PubMed  Google Scholar 

  23. Anderson SJ, Wapnir I, Dignam JJ, Fisher B, Mamounas EP, Jeong J-H, et al. Prognosis after ipsilateral breast tumor recurrence and locoregional recurrences in patients treated by breast-conserving therapy in five National Surgical Adjuvant Breast and Bowel Project protocols of node-negative breast cancer. J Clin Oncol. 2009;27:2466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bernstein JL, Lapinski RH, Thakore SS, Doucette JT, Thompson WD. The descriptive epidemiology of second primary breast cancer. Epidemiology. 2003;14:552–8.

    Article  PubMed  Google Scholar 

  25. Lee JM, Buist DSM, Houssami N, Dowling EC, Halpern EF, Gazelle GS, et al. Five-year risk of interval-invasive second breast cancer. J Natl Cancer Inst. 2015;107.

  26. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG), Darby S, McGale P, Correa C, Taylor C, Arriagada R, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet. 2011;378:1707–16.

    Article  CAS  Google Scholar 

  27. Fowble B, Hanlon A, Freedman G, Nicolaou N, Anderson P. Second cancers after conservative surgery and radiation for stages I-II breast cancer: identifying a subset of women at increased risk. Int J Radiat Oncol Biol Phys. 2001;51:679–90.

    Article  CAS  PubMed  Google Scholar 

  28. Nichols HB, Berrington de González A, Lacey JV, Rosenberg PS, Anderson WF. Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol. 2011;29:1564–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lu WL, Jansen L, Post WJ, Bonnema J, Van de Velde JC, De Bock GH. Impact on survival of early detection of isolated breast recurrences after the primary treatment for breast cancer: a meta-analysis. Breast Cancer Res Treat. 2009;114:403–12.

    Article  CAS  PubMed  Google Scholar 

  30. Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K. Atypical hyperplasia of the breast–risk assessment and management options. N Engl J Med. 2015;372:78–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, et al. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005;353:229–37.

    Article  CAS  PubMed  Google Scholar 

  32. Morrow M, Schnitt SJ, Norton L. Current management of lesions associated with an increased risk of breast cancer. Nat Rev Clin Oncol. 2015;12:227–38.

    Article  PubMed  Google Scholar 

  33. Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD, Simpson JF. Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet. 2003;361:125–9.

    Article  PubMed  Google Scholar 

  34. Degnim AC, Visscher DW, Berman HK, Frost MH, Sellers TA, Vierkant RA, et al. Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol. 2007;25:2671–7.

    Article  PubMed  Google Scholar 

  35. Menes TS, Kerlikowske K, Lange J, Jaffer S, Rosenberg R, Miglioretti DL. Subsequent breast cancer risk following diagnosis of atypical ductal hyperplasia on needle biopsy. JAMA Oncol. 2017;3:36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wong SM, King T, Boileau J-F, Barry WT, Golshan M. Population-based analysis of breast cancer incidence and survival outcomes in women diagnosed with lobular carcinoma in situ. Ann Surg Oncol. 2017;24:2509–17.

    Article  PubMed  Google Scholar 

  37. King TA, Pilewskie M, Muhsen S, Patil S, Mautner SK, Park A, et al. Lobular carcinoma in Situ: a 29-year longitudinal experience evaluating clinicopathologic features and breast cancer risk. J Clin Oncol. 2015;33:3945–52.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Coopey SB, Mazzola E, Buckley JM, Sharko J, Belli AK, Kim EMH, et al. The role of chemoprevention in modifying the risk of breast cancer in women with atypical breast lesions. Breast Cancer Res Treat. 2012;136:627–33.

    Article  CAS  PubMed  Google Scholar 

  39. Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356:227–36.

    Article  CAS  PubMed  Google Scholar 

  40. Mandelson MT, Oestreicher N, Porter PL, White D, Finder CA, Taplin SH, et al. Breast density as a predictor of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst. 2000;92:1081–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wanders JOP, Holland K, Veldhuis WB, Mann RM, Pijnappel RM, Peeters PHM, et al. Volumetric breast density affects performance of digital screening mammography. Breast Cancer Res Treat. 2017;162:95–103.

    Article  PubMed  Google Scholar 

  42. Kerlikowske K, Scott CG, Mahmoudzadeh AP, Ma L, Winham S, Jensen MR, et al. Automated and clinical breast imaging reporting and data system density measures predict risk for screen-detected and interval cancers: a case-control study. Ann Intern Med. 2018;168:757–65.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brentnall AR, Cuzick J, Buist DSM, Bowles EJA. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol. 2018;4:e180174.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Warwick J, Birke H, Stone J, Warren RML, Pinney E, Brentnall AR, et al. Mammographic breast density refines Tyrer-Cuzick estimates of breast cancer risk in high-risk women: findings from the placebo arm of the International Breast Cancer Intervention Study I. Breast Cancer Res. 2014;16:451.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17:147.

    Article  PubMed  PubMed Central  Google Scholar 

  46. National Comprehensive Cancer Network (NCCN) Guidelines for Breast Cancer Screening and Diagnosis. Version 1.2019 [Internet]. [cited 2020 Feb 1]. https://www.nccn.org/professionals/physician_gls/pdf/breast-screening.pdf

  47. National Comprehensive Cancer Network (NCCN) Guidelines for Genetic/Familial High-Risk Assessment: Breast, Ovarian and Pancreatic. Version 1.2020 [Internet]. [cited 2020 Feb 10]. https://www.nccn.org/professionals/physician_gls/pdf/genetics_screening.pdf

  48. National Comprehensive Cancer Network (NCCN) Guidelines for Breast Cancer. Version 4.2020 [Internet]. [cited 2020 May 7]. Available from: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf

  49. Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57:75–89.

    Article  PubMed  Google Scholar 

  50. Oeffinger KC, Fontham ETH, Etzioni R, Herzig A, Michaelson JS, Shih Y-CT, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American cancer society. JAMA. 2015;314:1599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. American Cancer Society_Breast Cancer Early Detection Recommendations [Internet]. [cited 2020 Feb 6]. https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-detection/american-cancer-society-recommendations-for-the-early-detection-of-breast-cancer.html

  52. Monticciolo DL, Newell MS, Moy L, Niell B, Monsees B, Sickles EA. Breast cancer screening in women at higher-than-average risk: recommendations from the ACR. J Am Coll Radiol. 2018;15:408–14.

    Article  PubMed  Google Scholar 

  53. The American Society of Breast Surgeons. Position Statement on Screening Mammography: The American Society of Breast Surgeons [Internet]. Position Statement on Screening Mammography: The American Society of Breast Surgeons. 2019 [cited 2020 Mar 1]. https://www.breastsurgeons.org/docs/statements/Position-Statement-on-Screening-Mammography.pdf

  54. Mann RM, Balleyguier C, Baltzer PA, Bick U, Colin C, Cornford E, et al. Breast MRI: EUSOBI recommendations for women’s information. Eur Radiol. 2015;25:3669–788.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sardanelli F, Fallenberg EM, Clauser P, Trimboli RM, Camps-Herrero J, Helbich TH, et al. Mammography: an update of the EUSOBI recommendations on information for women. Insights Imaging. 2017;8:11–8.

    Article  PubMed  Google Scholar 

  56. Evans A, Trimboli RM, Athanasiou A, Balleyguier C, Baltzer PA, Bick U, et al. Breast ultrasound: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights Imaging. 2018;9:449–61.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert FJ, et al. Magnetic resonance imaging of the breast: recommendations from the EUSOMA working group. Eur J Cancer. 2010;46:1296–316.

    Article  PubMed  Google Scholar 

  58. Runowicz CD, Leach CR, Henry NL, Henry KS, Mackey HT, Cowens-Alvarado RL, et al. American cancer society/american society of clinical oncology breast cancer survivorship care guideline. J Clin Oncol. 2016;34:611–35.

    Article  CAS  PubMed  Google Scholar 

  59. Cardoso F, Kyriakides S, Ohno S, Penault-Llorca F, Poortmans P, Rubio IT, et al. Early breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 2019;30:1194–220.

    Article  CAS  PubMed  Google Scholar 

  60. Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, et al. Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. J Clin Oncol. 2008;26:4282–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Checka CM, Chun JE, Schnabel FR, Lee J, Toth H. The relationship of mammographic density and age: implications for breast cancer screening. AJR Am J Roentgenol. 2012;198:W292–W295295.

    Article  PubMed  Google Scholar 

  62. Robson M, Offit K. Clinical practice. Management of an inherited predisposition to breast cancer. N Engl J Med. 2007;357:154–62.

    Article  CAS  PubMed  Google Scholar 

  63. Brekelmans CT, Seynaeve C, Bartels CC, Tilanus-Linthorst MM, Meijers-Heijboer EJ, Crepin CM, et al. Effectiveness of breast cancer surveillance in BRCA1/2 gene mutation carriers and women with high familial risk. J Clin Oncol. 2001;19:924–30.

    Article  CAS  PubMed  Google Scholar 

  64. Ciatto S, Houssami N, Bernardi D, Caumo F, Pellegrini M, Brunelli S, et al. Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 2013;14:583–9.

    Article  PubMed  Google Scholar 

  65. Marinovich ML, Hunter KE, Macaskill P, Houssami N. Breast cancer screening using tomosynthesis or mammography: a meta-analysis of cancer detection and recall. J Natl Cancer Inst. 2018;110:942–9.

    Article  PubMed  Google Scholar 

  66. Friedewald SM, Rafferty EA, Rose SL, Durand MA, Plecha DM, Greenberg JS, et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA. 2014;311:2499–507.

    Article  CAS  PubMed  Google Scholar 

  67. Gilbert FJ, Tucker L, Gillan MGC, Willsher P, Cooke J, Duncan KA, et al. Accuracy of digital breast tomosynthesis for depicting breast cancer subgroups in a UK retrospective reading study (TOMMY trial). Radiology. 2015;277:697–706.

    Article  PubMed  Google Scholar 

  68. Skaane P, Bandos AI, Gullien R, Eben EB, Ekseth U, Haakenaasen U, et al. Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology. 2013;267:47–56.

    Article  PubMed  Google Scholar 

  69. Rafferty EA, Park JM, Philpotts LE, Poplack SP, Sumkin JH, Halpern EF, et al. Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. Radiology. 2013;266:104–13.

    Article  PubMed  Google Scholar 

  70. Phi X-A, Tagliafico A, Houssami N, Greuter MJW, de Bock GH. Digital breast tomosynthesis for breast cancer screening and diagnosis in women with dense breasts—a systematic review and meta-analysis. BMC Cancer. 2018;18:380.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zuckerman SP, Conant EF, Keller BM, Maidment ADA, Barufaldi B, Weinstein SP, et al. Implementation of Synthesized Two-dimensional Mammography in a Population-based Digital Breast Tomosynthesis Screening Program. Radiology. 2016;281:730–6.

    Article  PubMed  Google Scholar 

  72. Skaane P, Bandos AI, Eben EB, Jebsen IN, Krager M, Haakenaasen U, et al. Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images. Radiology. 2014;271:655–63.

    Article  PubMed  Google Scholar 

  73. Kriege M, Brekelmans CTM, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, et al. Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med. 2004;351:427–37.

    Article  CAS  PubMed  Google Scholar 

  74. Kuhl CK, Schrading S, Leutner CC, Morakkabati-Spitz N, Wardelmann E, Fimmers R, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol. 2005;23:8469–76.

    Article  PubMed  Google Scholar 

  75. Tieu MT, Cigsar C, Ahmed S, Ng A, Diller L, Millar BA, et al. Breast cancer detection among young survivors of pediatric Hodgkin lymphoma with screening magnetic resonance imaging. Cancer. 2014;120:2507–13.

    Article  PubMed  Google Scholar 

  76. Warner E, Plewes DB, Hill KA, Causer PA, Zubovits JT, Jong RA, et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA. 2004;292:1317–25.

    Article  CAS  PubMed  Google Scholar 

  77. Kuhl C, Weigel S, Schrading S, Arand B, Bieling H, König R, et al. Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol. 2010;28:1450–7.

    Article  PubMed  Google Scholar 

  78. Ng AK, Garber JE, Diller LR, Birdwell RL, Feng Y, Neuberg DS, et al. Prospective study of the efficacy of breast magnetic resonance imaging and mammographic screening in survivors of Hodgkin lymphoma. J Clin Oncol. 2013;31:2282–8.

    Article  PubMed  Google Scholar 

  79. Riedl CC, Luft N, Bernhart C, Weber M, Bernathova M, Tea M-KM, et al. Triple-modality screening trial for familial breast cancer underlines the importance of magnetic resonance imaging and questions the role of mammography and ultrasound regardless of patient mutation status, age, and breast density. J Clin Oncol. 2015;33:1128–35.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Weinstein SP, Localio AR, Conant EF, Rosen M, Thomas KM, Schnall MD. Multimodality screening of high-risk women: a prospective cohort study. J Clin Oncol. 2009;27:6124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  81. van Zelst JCM, Mus RDM, Woldringh G, Rutten MJCM, Bult P, Vreemann S, et al. Surveillance of women with the BRCA1 or BRCA2 mutation by using biannual automated breast US, MR imaging, and mammography. Radiology. 2017;285:376–88.

    Article  PubMed  Google Scholar 

  82. Lo G, Scaranelo AM, Aboras H, Ghai S, Kulkarni S, Fleming R, et al. Evaluation of the utility of screening mammography for high-risk women undergoing screening breast MR imaging. Radiology. 2017;285:36–433.

    Article  PubMed  Google Scholar 

  83. Warner E, Messersmith H, Causer P, Eisen A, Shumak R, Plewes D. Systematic review: using magnetic resonance imaging to screen women at high risk for breast cancer. Ann Intern Med. 2008;148:671–9.

    Article  PubMed  Google Scholar 

  84. Mann RM, Kuhl CK, Moy L. Contrast-enhanced MRI for breast cancer screening. J Magn Reson Imaging. 2019;50:377–90.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leach MO, Boggis CRM, Dixon AK, Easton DF, Eeles RA, Evans DGR, et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet. 2005;365:1769–78.

    Article  CAS  PubMed  Google Scholar 

  86. Sardanelli F, Podo F, Santoro F, Manoukian S, Bergonzi S, Trecate G, et al. Multicenter surveillance of women at high genetic breast cancer risk using mammography, ultrasonography, and contrast-enhanced magnetic resonance imaging (the high breast cancer risk italian 1 study): final results. Invest Radiol. 2011;46:94–105.

    Article  PubMed  Google Scholar 

  87. Saadatmand S, Obdeijn I-M, Rutgers EJ, Oosterwijk JC, Tollenaar RA, Woldringh GH, et al. Survival benefit in women with BRCA1 mutation or familial risk in the MRI screening study (MRISC). Int J Cancer. 2015;137:1729–38.

    Article  CAS  PubMed  Google Scholar 

  88. Saadatmand S, Geuzinge HA, Rutgers EJT, Mann RM, de Roy van Zuidewijn DBW, Zonderland HM, et al. MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial. Lancet Oncol. 2019;20:1136–47.

    Article  PubMed  Google Scholar 

  89. Warner E, Hill K, Causer P, Plewes D, Jong R, Yaffe M, et al. Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J Clin Oncol. 2011;29:1664–9.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Evans DG, Kesavan N, Lim Y, Gadde S, Hurley E, Massat NJ, et al. MRI breast screening in high-risk women: cancer detection and survival analysis. Breast Cancer Res Treat. 2014;145:663–72.

    Article  PubMed  Google Scholar 

  91. Sung JS, Stamler S, Brooks J, Kaplan J, Huang T, Dershaw DD, et al. Breast cancers detected at screening MR imaging and mammography in patients at high risk: method of detection reflects tumor histopathologic results. Radiology. 2016;280:716–22.

    Article  PubMed  Google Scholar 

  92. Freitas V, Scaranelo A, Menezes R, Kulkarni S, Hodgson D, Crystal P. Added cancer yield of breast magnetic resonance imaging screening in women with a prior history of chest radiation therapy. Cancer. 2013;119:495–503.

    Article  PubMed  Google Scholar 

  93. Sung JS, Lee CH, Morris EA, Oeffinger KC, Dershaw DD. Screening breast MR imaging in women with a history of chest irradiation. Radiology. 2011;259:65–71.

    Article  PubMed  Google Scholar 

  94. Houssami N, Abraham LA, Miglioretti DL, Sickles EA, Kerlikowske K, Buist DSM, et al. Accuracy and outcomes of screening mammography in women with a personal history of early-stage breast cancer. JAMA. 2011;305:790–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cho N, Han W, Han B-K, Bae MS, Ko ES, Nam SJ, et al. Breast cancer screening with mammography plus ultrasonography or magnetic resonance imaging in women 50 years or younger at diagnosis and treated with breast conservation therapy. JAMA Oncol. 2017;3:1495–502.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sippo DA, Burk KS, Mercaldo SF, Rutledge GM, Edmonds C, Guan Z, et al. Performance of screening breast MRI across women with different elevated breast cancer risk indications. Radiology. 2019;292:51–9.

    Article  PubMed  Google Scholar 

  97. Brem RF, Tabár L, Duffy SW, Inciardi MF, Guingrich JA, Hashimoto BE, et al. Assessing improvement in detection of breast cancer with three-dimensional automated breast US in women with dense breast tissue: the SomoInsight Study. Radiology. 2015;274:663–73.

    Article  PubMed  Google Scholar 

  98. Hooley RJ, Greenberg KL, Stackhouse RM, Geisel JL, Butler RS, Philpotts LE. Screening US in patients with mammographically dense breasts: initial experience with Connecticut Public Act 09–41. Radiology. 2012;265:59–69.

    Article  PubMed  Google Scholar 

  99. Berg WA, Zhang Z, Lehrer D, Jong RA, Pisano ED, Barr RG, et al. Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA. 2012;307:1394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Drohan B, Roche CA, Cusack JC, Hughes KS. Hereditary breast and ovarian cancer and other hereditary syndromes: using technology to identify carriers. Ann Surg Oncol. 2012;19:1732–7.

    Article  PubMed  Google Scholar 

  101. Anglian Breast Cancer Study Group. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Br J Cancer. 2000;83:1301–8.

    Article  PubMed Central  Google Scholar 

  102. Guo F, Scholl M, Fuchs EL, Berenson AB, Kuo Y-F. BRCA testing in unaffected young women in the United States, 2006–2017. Cancer. 2020;126:337–43.

    Article  PubMed  Google Scholar 

  103. Pijpe A, Andrieu N, Easton DF, Kesminiene A, Cardis E, Noguès C, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ. 2012;345:e5660.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Narod SA, Lubinski J, Ghadirian P, Lynch HT, Moller P, Foulkes WD, et al. Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet Oncol. 2006;7:402–6.

    Article  CAS  PubMed  Google Scholar 

  105. Goldfrank D, Chuai S, Bernstein JL, Ramon Y, Cajal T, Lee JB, Alonso MC, et al. Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol Biomarkers Prev. 2006;15:2311–3.

    Article  CAS  PubMed  Google Scholar 

  106. Bhatia S, Sklar C. Second cancers in survivors of childhood cancer. Nat Rev Cancer. 2002;2:124–32.

    Article  PubMed  Google Scholar 

  107. Evans DGR, Birch JM, Ramsden RT, Sharif S, Baser ME. Malignant transformation and new primary tumours after therapeutic radiation for benign disease: substantial risks in certain tumour prone syndromes. J Med Genet. 2006;43:289–94.

    Article  CAS  PubMed  Google Scholar 

  108. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270:834–41.

    Article  PubMed  Google Scholar 

  109. McDonald RJ, McDonald JS, Kallmes DF, Jentoft ME, Paolini MA, Murray DL, et al. Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities. Radiology. 2017;285:546–54.

    Article  PubMed  Google Scholar 

  110. Phi X-A, Saadatmand S, De Bock GH, Warner E, Sardanelli F, Leach MO, et al. Contribution of mammography to MRI screening in BRCA mutation carriers by BRCA status and age: individual patient data meta-analysis. Br J Cancer. 2016;114:631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Narayan AK, Visvanathan K, Harvey SC. Comparative effectiveness of breast MRI and mammography in screening young women with elevated risk of developing breast cancer: a retrospective cohort study. Breast Cancer Res Treat. 2016;158:583–9.

    Article  PubMed  Google Scholar 

  112. Heijnsdijk EAM, Warner E, Gilbert FJ, Tilanus-Linthorst MMA, Evans G, Causer PA, et al. Differences in natural history between breast cancers in BRCA1 and BRCA2 mutation carriers and effects of MRI screening-MRISC, MARIBS, and Canadian studies combined. Cancer Epidemiol Biomarkers Prev. 2012;21:1458–68.

    Article  PubMed  Google Scholar 

  113. Chiarelli AM, Blackmore KM, Muradali D, Done SJ, Majpruz V, Weerasinghe A, et al. Performance measures of magnetic resonance imaging plus mammography in the high risk ontario breast screening program. J Natl Cancer Inst. 2020;112:136–44.

    Article  PubMed  CAS  Google Scholar 

  114. Bakker MF, de Lange SV, Pijnappel RM, Mann RM, Peeters PHM, Monninkhof EM, et al. Supplemental MRI screening for women with extremely dense breast tissue. N Engl J Med. 2019;381:2091–102.

    Article  PubMed  Google Scholar 

  115. Comstock CE, Gatsonis C, Newstead GM, Snyder BS, Gareen IF, Bergin JT, et al. Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA. 2020;323:746–56.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Kuhl CK, Schrading S, Strobel K, Schild HH, Hilgers R-D, Bieling HB. Abbreviated breast magnetic resonance imaging (MRI): first postcontrast subtracted images and maximum-intensity projection-a novel approach to breast cancer screening with MRI. J Clin Oncol. 2014;32:2304–10.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natsuko Onishi.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, N., Kataoka, M. Breast cancer screening for women at high risk: review of current guidelines from leading specialty societies. Breast Cancer 28, 1195–1211 (2021). https://doi.org/10.1007/s12282-020-01157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-020-01157-1

Keywords

Navigation