Skip to main content

Advertisement

Log in

Gene expression-based prognostic and predictive tools in breast cancer

  • Review Article
  • Published:
Breast Cancer Aims and scope Submit manuscript

Abstract

Genomic assays measuring the expression of multiple genes have made their way into clinical practice and their utilization is now recommended by major international guidelines. A basic property of these tests is their capability to sub-divide patients into high- and low-risk cohorts thereby providing prognostic, and in certain settings, predictive decision support. Here, we summarize commercially available assays for breast cancer including RT-PCR and gene chip-based tests. Given the relative uncertainty in cancer treatment, multigene tests have the potential for a significant cost reduction as they can pinpoint those patients for whom chemotherapy proves to be unnecessary. However, concordance of risk assessment for an individual patient is still far from optimal. Additionally, emerging multigene approaches focus on predicting therapy response, which is a black spot of current tests. Promising techniques include the homologous recombination deficiency score, utilization of massive parallel sequencing to identify driver genes, employment of internet-based meta-analysis tools and investigation of miRNA expression signatures. Combination of multiple simultaneous analyses at diagnosis, including classical histopathological diagnostics, monogenic markers, genomic signatures and clinical parameters will most likely bring maximal benefit for patients. As the main driving force behind such genomic tests is the power to achieve cost reduction due to avoiding unnecessary systemic treatment, the future is most likely to hold a further proliferation of such assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

CNA:

Copy number alterations

ER:

Estrogen receptor

FDA:

US Food and Drug Administration

FFPE:

Formalin-fixed, paraffin-embedded

FISH:

Fluorescence in situ hybridization

GGI:

Genomic grade index

HER2:

Human epidermal growth factor receptor 2

HRD:

Homologous recombination deficiency

IHC:

Immunohistochemistry

miRNA:

Micro RNA

NCCN:

National Comprehensive Cancer Network

NGS:

Next (second) generation sequencing

PgR:

Progesterone receptor

ROR:

Risk of recurrence

TCGA:

The cancer genome atlas

References

  1. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784–95.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Surowiak P, Suchocki S, Gyorffy B, Gansukh T, Wojnar A, Maciejczyk A, et al. Stromal myofibroblasts in breast cancer: relations between their occurrence, tumor grade and expression of some tumour markers. Folia Histochem Cytobiol. 2006;44:111–6.

    PubMed  Google Scholar 

  3. Lende TH, Janssen EA, Gudlaugsson E, Voorhorst F, Smaaland R, van Diest P, et al. In patients younger than age 55 years with lymph node-negative breast cancer, proliferation by mitotic activity index is prognostically superior to adjuvant! J Clin Oncol. 2011;29:852–8.

    Article  PubMed  Google Scholar 

  4. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol. 2013;24:2206–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Polley MY, Leung SC, McShane LM, Gao D, Hugh JC, Mastropasqua MG, et al. An international Ki67 reproducibility study. J Natl Cancer Inst. 2013;105:1897–906.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mook S, Schmidt MK, Viale G, Pruneri G, Eekhout I, Floore A, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat. 2009;116:295–302.

    Article  CAS  PubMed  Google Scholar 

  7. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.

    Article  PubMed  Google Scholar 

  8. Mittempergher L, de Ronde JJ, Nieuwland M, Kerkhoven RM, Simon I, Rutgers EJ, et al. Gene expression profiles from formalin fixed paraffin embedded breast cancer tissue are largely comparable to fresh frozen matched tissue. PLoS One. 2011;6:e17163.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Mihaly Z, Gyorffy B. Improving pathological assessment of breast cancer by employing array-based transcriptome analysis. Microarrays. 2013;2:14.

    Article  Google Scholar 

  11. Dowsett M, Sestak I, Lopez-Knowles E, Sidhu K, Dunbier AK, Cowens JW, et al. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol. 2013;31:2783–90.

    Article  PubMed  Google Scholar 

  12. Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11:339–49.

    Article  CAS  PubMed  Google Scholar 

  13. van de Vijver MJ. Molecular tests as prognostic factors in breast cancer. Virchows Arch. 2014;464:283–91.

    Article  PubMed  Google Scholar 

  14. Cuzick J, Dowsett M, Pineda S, Wale C, Salter J, Quinn E, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29:4273–8.

    Article  PubMed  Google Scholar 

  15. Barton S, Zabaglo L, A’Hern R, Turner N, Ferguson T, O’Neill S, et al. Assessment of the contribution of the IHC4 + C score to decision making in clinical practice in early breast cancer. Br J Cancer. 2012;106:1760–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.

    Article  CAS  PubMed  Google Scholar 

  17. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst. 2006;98:262–72.

    Article  CAS  PubMed  Google Scholar 

  18. Toussaint J, Sieuwerts AM, Haibe-Kains B, Desmedt C, Rouas G, Harris AL, et al. Improvement of the clinical applicability of the Genomic Grade Index through a qRT-PCR test performed on frozen and formalin-fixed paraffin-embedded tissues. BMC Genom. 2009;10:424.

    Article  Google Scholar 

  19. Filipits M, Rudas M, Jakesz R, Dubsky P, Fitzal F, Singer CF, et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res. 2011;17:6012–20.

    Article  CAS  PubMed  Google Scholar 

  20. Dubsky P, Filipits M, Jakesz R, Rudas M, Singer CF, Greil R, et al. EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol. 2013;24:640–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Muller BM, Keil E, Lehmann A, Winzer KJ, Richter-Ehrenstein C, Prinzler J, et al. The EndoPredict gene-expression assay in clinical practice—performance and impact on clinical decisions. PLoS One. 2013;8:e68252.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ma XJ, Salunga R, Dahiya S, Wang W, Carney E, Durbecq V, et al. A five-gene molecular grade index and HOXB13:iL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res. 2008;14:2601–8.

    Article  CAS  PubMed  Google Scholar 

  23. Jankowitz RC, Cooper K, Erlander MG, Ma XJ, Kesty NC, Li H, et al. Prognostic utility of the breast cancer index and comparison to adjuvant! Online in a clinical case series of early breast cancer. Breast Cancer Res. 2011;13:R98.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sgroi DC, Sestak I, Cuzick J, Zhang Y, Schnabel CA, Schroeder B, et al. Prediction of late distant recurrence in patients with oestrogen-receptor-positive breast cancer: a prospective comparison of the breast-cancer index (BCI) assay, 21-gene recurrence score, and IHC4 in the TransATAC study population. Lancet Oncol. 2013;14:1067–76.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Iwamoto T, Lee JS, Bianchini G, Hubbard RE, Young E, Matsuoka J, et al. First generation prognostic gene signatures for breast cancer predict both survival and chemotherapy sensitivity and identify overlapping patient populations. Breast Cancer Res Treat. 2011;130:155–64.

    Article  PubMed  Google Scholar 

  26. Gyorffy B, Serra V, Jurchott K, Abdul-Ghani R, Garber M, Stein U, et al. Prediction of doxorubicin sensitivity in breast tumors based on gene expression profiles of drug-resistant cell lines correlates with patient survival. Oncogene. 2005;24:7542–51.

    Article  PubMed  Google Scholar 

  27. Tegze B, Szallasi Z, Haltrich I, Penzvalto Z, Toth Z, Liko I, et al. Parallel evolution under chemotherapy pressure in 29 breast cancer cell lines results in dissimilar mechanisms of resistance. PLoS One. 2012;7:e30804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hatzis C, Pusztai L, Valero V, Booser DJ, Esserman L, Lluch A, et al. A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. JAMA. 2011;305:1873–81.

    Article  CAS  PubMed  Google Scholar 

  29. Mihaly Z, Kormos M, Lanczky A, Dank M, Budczies J, Szasz MA, et al. A meta-analysis of gene expression-based biomarkers predicting outcome after tamoxifen treatment in breast cancer. Breast Cancer Res Treat. 2013;140:219–32.

    Article  CAS  PubMed  Google Scholar 

  30. Harismendy O, Schwab RB, Bao L, Olson J, Rozenzhak S, Kotsopoulos SK, et al. Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing. Genome Biol. 2011;12:R124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. McBride DJ, Orpana AK, Sotiriou C, Joensuu H, Stephens PJ, Mudie LJ, et al. Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes Chromosomes Cancer. 2010;49:1062–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Gyorffy B, Schafer R. Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res Treat. 2009;118:433–41.

    Article  PubMed  Google Scholar 

  33. Gyorffy B, Benke Z, Lanczky A, Balazs B, Szallasi Z, Timar J, et al. RecurrenceOnline: an online analysis tool to determine breast cancer recurrence and hormone receptor status using microarray data. Breast Cancer Res Treat. 2012;132:1025–34.

    Article  CAS  PubMed  Google Scholar 

  34. Naoi Y, Kishi K, Tanei T, Tsunashima R, Tominaga N, Baba Y, et al. Development of 95-gene classifier as a powerful predictor of recurrences in node-negative and ER-positive breast cancer patients. Breast Cancer Res Treat. 2011;128:633–41.

    Article  PubMed  Google Scholar 

  35. Naoi Y, Kishi K, Tsunashima R, Shimazu K, Shimomura A, Maruyama N, et al. Comparison of efficacy of 95-gene and 21-gene classifier (Oncotype DX) for prediction of recurrence in ER-positive and node-negative breast cancer patients. Breast Cancer Res Treat. 2013;140:299–306.

    Article  PubMed  Google Scholar 

  36. Gyorffy B, Karn T, Sztupinszki Z, Weltz B, Muller V, Pusztai L. Dynamic classification using case-specific training cohorts outperforms static gene expression signatures in breast cancer. Int J Cancer. 2014.

  37. Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107:1776–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497:378–82.

    Article  CAS  PubMed  Google Scholar 

  39. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci USA. 2012;109:3024–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Volinia S, Croce CM. Prognostic microRNA/mRNA signature from the integrated analysis of patients with invasive breast cancer. Proc Natl Acad Sci USA. 2013;110:7413–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Magnani L, Stoeck A, Zhang X, Lanczky A, Mirabella AC, Wang TL, et al. Genome-wide reprogramming of the chromatin landscape underlies endocrine therapy resistance in breast cancer. Proc Natl Acad Sci USA. 2013;110:E1490–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Szasz AM, Li Q, Eklund AC, Sztupinszki Z, Rowan A, Tokes AM, et al. The CIN4 chromosomal instability qPCR classifier defines tumor aneuploidy and stratifies outcome in grade 2 breast cancer. PLoS One. 2013;8:e56707.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, et al. Tumour evolution inferred by single-cell sequencing. Nature. 2011;472:90–4.

    Article  CAS  PubMed  Google Scholar 

  44. Munkacsy G, Abdul-Ghani R, Mihaly Z, Tegze B, Tchernitsa O, Surowiak P, et al. PSMB7 is associated with anthracycline resistance and is a prognostic biomarker in breast cancer. Br J Cancer. 2010;102:361–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Blohmer JU, Rezai M, Kummel S, Kuhn T, Warm M, Friedrichs K, et al. Using the 21-gene assay to guide adjuvant chemotherapy decision-making in early-stage breast cancer: a cost-effectiveness evaluation in the German setting. J Med Econ. 2013;16:30–40.

    Article  CAS  PubMed  Google Scholar 

  46. Drukker CA, Bueno-de-Mesquita JM, Retel VP, van Harten WH, van Tinteren H, Wesseling J, et al. A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer. 2013;133:929–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Maciejczyk A, Jagoda E, Wysocka T, Matkowski R, Gyorffy B, Lage H, et al. ABCC2 (MRP2, cMOAT) localized in the nuclear envelope of breast carcinoma cells correlates with poor clinical outcome. Pathol Oncol Res. 2012;18:331–42.

    Article  CAS  PubMed  Google Scholar 

  48. Ignatiadis M, Sotiriou C. Breast cancer: should we assess HER2 status by Oncotype DX? Nat Rev Clin Oncol. 2012;9:12–4.

    Article  CAS  Google Scholar 

  49. Gyorffy B, Bottai G, Lehmann-Che J, Keri G, Orfi L, Iwamoto T, et al. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers. Mol Oncol. 2014;8:508.

    Article  CAS  PubMed  Google Scholar 

  50. Ward S, Scope A, Rafia R, Pandor A, Harnan S, Evans P, et al. Gene expression profiling and expanded immunohistochemistry tests to guide the use of adjuvant chemotherapy in breast cancer management: a systematic review and cost-effectiveness analysis. Health Technol Assess. 2013;17:1–302.

    Article  CAS  PubMed  Google Scholar 

  51. Desmedt C, Giobbie-Hurder A, Neven P, Paridaens R, Christiaens MR, Smeets A, et al. The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1–98 trial. BMC Med Genomics. 2009;2:40.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Poremba C, Uhlendorff J, Pfitzner BM, Hennig G, Bohmann K, Bojar H, et al. Preanalytical variables and performance of diagnostic RNA-based gene expression analysis in breast cancer. Virchows Arch. 2014;465:409–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Martin M, Brase JC, Calvo L, Krappmann K, Ruiz-Borrego M, Fisch K, et al. Clinical validation of the EndoPredict test in node-positive, chemotherapy-treated ER +/HER2- breast cancer patients: results from the GEICAM 9906 trial. Breast Cancer Res. 2014;16:R38.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Gustavsen G, Schroeder B, Kennedy P, Pothier KC, Erlander MG, Schnabel CA, et al. Health economic analysis of Breast Cancer Index in patients with ER+, LN-breast cancer. Am J Manag Care. 2014;20:e302–10.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the OTKA K108655 grant. A. M. S. was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11-1-2012-0001 ‘National Excellence Program’.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyöngyi Munkácsy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munkácsy, G., Szász, M.A. & Menyhárt, O. Gene expression-based prognostic and predictive tools in breast cancer. Breast Cancer 22, 245–252 (2015). https://doi.org/10.1007/s12282-015-0594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12282-015-0594-y

Keywords

Navigation