Skip to main content

Advertisement

Log in

MALDI-TOF MS: Foundations and a Practical Approach to the Clinically Relevant Filamentous Fungi Identification

  • Clinical Mycology Lab Issues (S Cordoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this review, the applicability of matrix-assisted laser ionisation/desorption time-of-flight mass spectrometry (MALDI-TOF) to the identification of clinical relevant filamentous fungi is presented. In addition, the need to implement and validate in-house databases, to fill the gaps in commercial databases, and the importance of permanently updating spectra databases are topics addressed.

Recent Findings

MALDI-TOF MS is recognised as a powerful tool for discriminating complex and cryptic fungal species, as well as for strain typing of filamentous fungi of medical importance.

Summary

MALDI-TOF MS is a versatile technique and an undeniable tool for identification of filamentous fungi as part of the routine of a clinical mycology laboratory. The application of standardised procedures for the implementation and validation of the in-house databases, as well as for the identification of clinical isolates, is essential to obtain results that are comparable to those obtained through sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Matos AMF, Moreira LM, Barczewski BF, de Matos LX, de Oliveira JBV, Pimentel FMI, et al. Identification by MALDI-TOF MS of Sporothrix brasiliensis isolated from a subconjunctival infiltrative lesion in an immunocompetent patient. Microorganisms. 2019;8:1–22. https://doi.org/10.3390/microorganisms8010022.

    Article  Google Scholar 

  2. Barros Correia ACR, Barbosa RN, Frisvad JC, Houbraken J, Souza-Motta CM. The polyphasic re-identification of a Brazilian Aspergillus section Terrei collection led to the discovery of two new species. Mycol Progress. 2020;19:885–903. https://doi.org/10.1007/s11557-020-01605-4.

    Article  Google Scholar 

  3. Frisvad JC, Filtenborg O. Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites. Appl Environ Microbiol. 1983;46:1301–10. https://doi.org/10.1128/AEM.46.6.1301-1310.1983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Frisvad JC, Thrane U. Standardized high-performance liquid chromatography of 182 mycotoxins and other fungal metabolites based on alkylphenone retention indices and UV-VIS spectra (diode array detection). J Chromatogr. 1987;404:195–214. https://doi.org/10.1016/s0021-9673(01)86850-3.

    Article  CAS  PubMed  Google Scholar 

  5. Simões MF, Santos C, Lima N. Structural diversity of Aspergillus (section Nigri) spores. Microsc Microanal. 2013;19:1151–8. https://doi.org/10.1017/S1431927613001712.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander D, Kennedy AD, Desai N, Kensicki E, Pappan KL: Molecular biology of food and water borne mycotoxigenic and mycotic fungi. In: Paterson RM, Lima N, editors. Metabolomics of food- and waterborne fungal pathogens. Routledge & CRC Press; 2015.

  7. Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass spectrometry: a rosetta stone to learn how fungi interact and talk. Life (Basel). 2020;10:89. https://doi.org/10.3390/life10060089.

    Article  CAS  Google Scholar 

  8. Robert V, Cardinali G, Stielow B, Vu TD, Borges dos Santos F, Meyer W, et al. Fungal DNA barcoding. In: Paterson, RM, Lima N, editors. Metabolomics of food- and waterborne fungal pathogens. Routledge & CRC Press; 2015.

  9. Paziani MH, Carvalho LT, Melhem M de SC, de Almeida MTG, da Silva MENB, Martinez R, et al. First comprehensive report of clinical Fusarium strains isolated in the state of Sao Paulo (Brazil) and identified by MALDI-TOF MS and Molecular Biology. Microorganisms. 2019;8:1–668. https://doi.org/10.3390/microorganisms8010066.

    Article  CAS  Google Scholar 

  10. Bidartondo MI. Preserving accuracy in GenBank. Science. 2008;319:1616. https://doi.org/10.1126/science.319.5870.1616a.

    Article  CAS  PubMed  Google Scholar 

  11. Santos C, Galeano P, Lima-Neto R, Oliveira MME, Lima N. MALDI-TOF MS and its requirements for fungal identification. In: Bridge P, Smith D, Stackebrandt E,editors. Trends Syst Bacteria Fungi. 2020.

  12. Santos C, Ventura JA, Lima N. New insights for diagnosis of pineapple fusariosis by MALDI-TOF MS technique. Curr Microbiol. 2016;73:206–13. https://doi.org/10.1007/s00284-016-1041-9.

    Article  CAS  PubMed  Google Scholar 

  13. •• Wilkendorf LS, Bowles E, Buil JB, van der Lee HAL, Posteraro B, Sanguinetti M, et al. Update on matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi. J Clin Microbiol. 2020;58:1–19. https://doi.org/10.1128/JCM.01263-20. In the review, the authors show different preanalytical approaches for the identification of clinically important filamentous fungi through the use of MALDI-TOF MS. Also, the performances of different commercially databases, as well as the potential of in-house databases, are revised.

    Article  Google Scholar 

  14. Santos CR, Francisco E, Mazza M, Padovan ACB, Colombo A, Lima N. Impact of MALDI-TOF MS in clinical mycology; progress and barriers in diagnostics. MALDI-TOF and tandem MS for clinical microbiology. In: Shah HN, Gharbia SE, editors. MALDI-TOF and Tandem MS for Clinical Microbiology. London: John Wiley & Sons Ltd; 2017.

  15. Potenza L, Vallerini D, Barozzi P, Riva G, Gilioli A, Forghieri F, et al. Mucorales-specific T cells in patients with hematologic malignancies. PLoS ONE. 2016;11:e0149108. https://doi.org/10.1371/journal.pone.0149108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu PF, Liu WL, Hsieh MH, Hii IM, Lee YL, Lin YT, et al. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;6:e87. https://doi.org/10.1038/emi.2017.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol. 2018;56:102–25. https://doi.org/10.1093/mmy/myx113.

    Article  PubMed  Google Scholar 

  18. Malcolm TR, Chin-Hong PV. Endemic mycoses in immunocompromised hosts. Curr Infect Dis Rep. 2013;15:536–43. https://doi.org/10.1007/s11908-013-0387-4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hung N, Hsiao CH, Yang CS, Lin HC, Yeh LK, Fan YC, et al. Colletotrichum keratitis: a rare yet important fungal infection of human eyes. Mycoses. 2020;63:407–15. https://doi.org/10.1111/myc.13058.

    Article  PubMed  Google Scholar 

  20. Pemán J, Quindós G. State of the art in invasive diseases by filamentous fungi. Rev Iberoam Micol. 2014;31:213–8. https://doi.org/10.1016/j.riam.2014.07.003.

    Article  PubMed  Google Scholar 

  21. Sewell TR, Zhang Y, Brackin AP, Shelton JMG, Rhodes J, Fisher MC. Elevated prevalence of azole-resistant Aspergillus fumigatus in urban versus rural environments in the United Kingdom. Antimicrob Agents Chemother. 2019;63:e00548-e619. https://doi.org/10.1128/AAC.00548-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Hoog GS, Guarro J, Gené J, Ahmed S, Al-Hatmi AMS, Figueras MJ, Vitale RG. Atlas of clinical fungi. 3rd ed. Utrech/Reus. 2019.

  23. Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics. 2013;10:151–64. https://doi.org/10.1586/epr.13.8.

    Article  CAS  PubMed  Google Scholar 

  24. Mahmoudi S, Zaini F, Kordbacheh P, Safara M, Heidari M. Sporothrix schenckii complex in Iran: molecular identification and antifungal susceptibility. Med Mycol. 2016;54:593–9. https://doi.org/10.1093/mmy/myw006.

    Article  PubMed  Google Scholar 

  25. Frías-De-León MG, Martínez-Herrera E, Atoche-Diéguez CE, González-Cespón JL, Uribe B, Arenas R, et al. Molecular identification of isolates of the Trichophyton mentagrophytes complex. Int J Med Sci. 2020;17:45–52. https://doi.org/10.7150/ijms.35173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Su H, Packeu A, Ahmed SA, Al-Hatmi AMS, Blechert O, İlkit M, et al. Species distinction in the Trichophyton rubrum complex. J Clin Microbiol. 2019:57–9. https://doi.org/10.1128/JCM.00352-19.

  27. Gaviria-Rivera A, Giraldo-López A, Santa-Cardona C, Cano-Restrepo L. Molecular identification of clinical isolates of Fusarium in Colombia. Rev Salud Publica (Bogota). 2018;20:94–102. https://doi.org/10.15446/rsap.V20n1.51923.

    Article  Google Scholar 

  28. Alastruey-Izquierdo A, Mellado E, Cuenca-Estrella M. Current section and species complex concepts in Aspergillus: recommendations for routine daily practice. Ann N Y Acad Sci. 2012;1273:18–24. https://doi.org/10.1111/j.1749-6632.2012.06822.x.

    Article  CAS  PubMed  Google Scholar 

  29. Patel R. Matrix-assisted laser desorption ionization-time of flight mass spectrometry in clinical microbiology. Clin Infect Dis. 2013;57:564–72. https://doi.org/10.1093/cid/cit247.

    Article  CAS  PubMed  Google Scholar 

  30. Perlin DS, Wiederhold NP. Culture-independent molecular methods for detection of antifungal resistance mechanisms and fungal identification. J Infect Dis. 2017;216:S458–65. https://doi.org/10.1093/infdis/jix121.

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira MME, Santos C, Sampaio P, Romeo O, Almeida-Paes R, Pais C, et al. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Res Microbiol. 2015;166:102–10. https://doi.org/10.1016/j.resmic.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  32. Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D. An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics. 2019;16:695–710. https://doi.org/10.1080/14789450.2019.1645603.

    Article  CAS  PubMed  Google Scholar 

  33. Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, Dalle F, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses. 2014;57:135–40. https://doi.org/10.1111/myc.12115.

    Article  CAS  PubMed  Google Scholar 

  34. Normand AC, Cassagne C, Ranque S, L’ollivier C, Fourquet P, Roesems S, et al. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi. BMC Microbiol. 2013;13:76. https://doi.org/10.1186/1471-2180-13-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, Tsakris A. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Ann Transl Med. 2018;6:240. https://doi.org/10.21037/atm.2018.06.28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rychert J, Slechta ES, Barker AP, Miranda E, Babady NE, Tang YW, et al. Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J Clin Microbiol. 2018;56:e013553-17. https://doi.org/10.1128/JCM.01353-17.

    Article  Google Scholar 

  37. Nakamura S, Sato H, Tanaka R, Kusuya Y, Takahashi H, Yaguchi T. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species. BMC Microbiol. 2017;17:100. https://doi.org/10.1186/s12866-017-1009-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hillenkamp F, Karas M. The MALDI process and method. In: Hillenkamp FaPKJ, editor. MALDI MS: A practical guide to instrumentation, methods and applications. 2007.

  39. Patel R. A moldy application of MALDI: MALDI-ToF mass spectrometry for fungal identification. J Fungi (Basel) 2019:5. https://doi.org/10.3390/jof5010004.

  40. Flórez-Muñoz SV, Gómez-Velásquez JC, Loaiza-Díaz N, Soares C, Santos C, Lima N, et al. ITS rDNA gene analysis versus MALDI-TOF MS for identification of Neoscytalidium dimidiatum isolated from onychomycosis and dermatomycosis cases in Medellin (Colombia). Microorganisms 2019:7. https://doi.org/10.3390/microorganisms7090306.

  41. Santos C, Paterson RRM, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol. 2010;108:375–85. https://doi.org/10.1111/j.1365-2672.2009.04448.x.

    Article  CAS  PubMed  Google Scholar 

  42. Rodrigues P, Santos C, Venâncio A, Lima N. Species identification of Aspergillus section Flavi isolates from Portuguese almonds using phenotypic, including MALDI-TOF ICMS, and molecular approaches. J Appl Microbiol. 2011;111:877–92. https://doi.org/10.1111/j.1365-2672.2011.05116.x.

    Article  CAS  PubMed  Google Scholar 

  43. Lima N, Santos C. MALDI-TOF MS for identification of food spoilage filamentous fungi. Curr Opin Food Sci. 2017;13:26–30. https://doi.org/10.1016/j.cofs.2017.02.002.

    Article  Google Scholar 

  44. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev. 2013;26:547–603. https://doi.org/10.1128/CMR.00072-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dias N, Santos C, Portela M, Lima N. Toenail onychomycosis in a Portuguese geriatric population. Mycopathologia. 2011;172:55–61. https://doi.org/10.1007/s11046-011-9402-1.

    Article  CAS  PubMed  Google Scholar 

  46. Pereira L, Dias N, Santos C, Lima N. The use of MALDI-TOF ICMS as an alternative tool for Trichophyton rubrum identification and typing. Enferm Infecc Microbiol Clin. 2014;32:11–7. https://doi.org/10.1016/j.eimc.2013.01.009.

    Article  PubMed  Google Scholar 

  47. Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, et al. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem. 2011;411:122–8. https://doi.org/10.1016/j.ab.2010.11.025.

    Article  CAS  PubMed  Google Scholar 

  48. Trimpin S, Wang B, Inutan ED, Li J, Lietz CB, Harron A, et al. A mechanism for ionization of nonvolatile compounds in mass spectrometry: considerations from MALDI and inlet ionization. J Am Soc Mass Spectrom. 2012;23:1644–60. https://doi.org/10.1007/s13361-012-0414-y.

    Article  CAS  PubMed  Google Scholar 

  49. da Costa Souza PN, Grigoletto TLB, de Moraes LAB, Abreu LM, Guimarães LHS, Santos C, et al. Production and chemical characterization of pigments in filamentous fungi. Microbiology (Reading). 2016;162:12–22. https://doi.org/10.1099/mic.0.000168.

    Article  CAS  Google Scholar 

  50. Welham KJ, Domin MA, Johnson K, Jones L, Ashton DS. Characterization of fungal spores by laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:307–10. https://doi.org/10.1002/(SICI)1097-0231(20000315)14:5%3c307::AID-RCM823%3e3.0.CO;2-3.

    Article  CAS  PubMed  Google Scholar 

  51. Miguel MG da CP, Reis LV de C, Efraim P, Santos C, Lima N, Schwan RF. Cocoa fermentation: Microbial identification by MALDI-TOF MS, and sensory evaluation of produced chocolate. LWT Food Sci Technol. 2017;77:362–9. https://doi.org/10.1016/j.lwt.2016.11.076.

    Article  CAS  Google Scholar 

  52. Tran A, Alby K, Kerr A, Jones M, Gilligan PH. Cost savings realized by implementation of routine microbiological identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2015;53:2473–9. https://doi.org/10.1128/JCM.00833-15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. •• Gómez-Velásquez JC, Loaiza-Díaz N, Hernández GN, Lima N, Mesa-Arango AC. Development and validation of an in-house library for filamentous fungi identification by MALDI-TOF MS in a clinical laboratory in Medellin (Colombia). Microorganisms. 2020;8. https://doi.org/10.3390/microorganisms8091362. The authors describe in detail a protocol for the creation and validation of an in-house library for the identification of filamentous fungi species not included in the Bruker Biotyper commercial database.

  54. • Zvezdanova ME, Escribano P, Ruiz A, Martínez-Jiménez MC, Peláez T, Collazos A, et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med Mycol. 2019;57:63–70. https://doi.org/10.1093/mmy/myx154. The authors demonstrate that with the standardization of the sample preparation and the in house construction, MALDI-TOF MS is a reliable method to identify filamentous fungi of clinical origin in an accurate, rapid and cost-effective way.

    Article  CAS  PubMed  Google Scholar 

  55. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;13:788–99. https://doi.org/10.1002/pmic.201200468.

    Article  CAS  PubMed  Google Scholar 

  56. Warnock DW. Name changes for fungi of medical importance, 2012 to 2015. J Clin Microbiol. 2017;55:53–9. https://doi.org/10.1128/JCM.00829-16.

    Article  PubMed  Google Scholar 

  57. de Almeida JN, Del Negro GMB, Grenfell RC, Vidal MSM, Thomaz DY, de Figueiredo DSY, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for differentiation of the dimorphic fungal species Paracoccidioides brasiliensis and Paracoccidioides lutzii. J Clin Microbiol. 2015;53:1383–6. https://doi.org/10.1128/JCM.02847-14.

    Article  CAS  Google Scholar 

  58. Lau SKP, Lam CSK, Ngan AHY, Chow W-N, Wu AKL, Tsang DNC, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei. BMC Microbiol. 2016;16:36. https://doi.org/10.1186/s12866-016-0656-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Valero C, Buitrago MJ, Gago S, Quiles-Melero I, García-Rodríguez J. A matrix-assisted laser desorption/ionization time of flight mass spectrometry reference database for the identification of Histoplasma capsulatum. Med Mycol. 2018;56:307–14. https://doi.org/10.1093/mmy/myx047.

    Article  CAS  PubMed  Google Scholar 

  60. Karabıçak N, Karatuna O, İlkit M, Akyar I. Evaluation of the Bruker matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) system for the identification of clinically important dermatophyte species. Mycopathologia. 2015;180:165–71. https://doi.org/10.1007/s11046-015-9898-x.

    Article  CAS  PubMed  Google Scholar 

  61. Masih A, Singh PK, Kathuria S, Agarwal K, Meis JF, Chowdhary A. Identification by molecular methods and matrix-assisted laser desorption ionization-time of flight mass spectrometry and antifungal susceptibility profiles of clinically significant rare Aspergillus species in a referral chest hospital in Delhi. India J Clin Microbiol. 2016;54:2354–64. https://doi.org/10.1128/JCM.00962-16.

    Article  PubMed  Google Scholar 

  62. Singh A, Singh P, Kumar A, Chander J, Khanna G, Roy P, et al. Molecular and matrix-assisted laser desorption ionization-time of flight mass spectrometry-based characterization of clinically significant melanized fungi in India. J Clin Microbiol. 2021;55(4):1090–103. https://doi.org/10.1128/JCM.02413-16.

    Article  Google Scholar 

  63. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109:6241–6. https://doi.org/10.1073/pnas.1117018109.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–30. https://doi.org/10.1128/AEM.61.4.1323-1330.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Park JM, Kim GY, Lee SJ, Kim MO, Huh MK, Lee TH, et al. Comparison of RAPD, AFLP, and EF-1α Sequences for the phylogenetic analysis of Fusarium oxysporum and its formae speciales in Korea. Mycobiology. 2006;34:45–55. https://doi.org/10.4489/MYCO.2006.34.2.045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gautier M, Ranque S, Normand AC, Becker P, Packeu A, Cassagne C, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections. Clin Microbiol Infect. 2014;20:1366–71. https://doi.org/10.1111/1469-0691.12750.

    Article  CAS  PubMed  Google Scholar 

  67. L’Ollivier C, Ranque S. MALDI-TOF-based dermatophyte identification. Mycopathologia. 2017;182:183–92. https://doi.org/10.1007/s11046-016-0080-x.

    Article  CAS  PubMed  Google Scholar 

  68. Becker PT, de Bel A, Martiny D, Ranque S, Piarroux R, Cassagne C, et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol. 2014;52:826–34. https://doi.org/10.1093/mmy/myu064.

    Article  CAS  PubMed  Google Scholar 

  69. Cassagne C, Ranque S, Normand A, Fourquet P, Thiebault S, Planard C, et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS ONE. 2011;6:e28425. https://doi.org/10.1371/journal.pone.0028425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Suh S-O, Grosso KM, Carrion ME. Multilocus phylogeny of the Trichophyton mentagrophytes species complex and the application of matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry for the rapid identification of dermatophytes. Mycologia. 2018;110:118–30. https://doi.org/10.1080/00275514.2018.1443653.

    Article  CAS  PubMed  Google Scholar 

  71. de Almeida JN, Sztajnbok J, da Silva AR, Vieira VA, Galastri AL, Bissoli L, et al. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry. Med Mycol. 2016;54:885–9. https://doi.org/10.1093/mmy/myw044.

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially funded by the Comité para el Desarrollo de la Investigación, Universidad de Antioquia, (Medellín, Colombia) Grant No 2604, Laboratorio Clínico Synlab S. A. S, Colombia, Universidad de La Frontera (Temuco, Chile) through the Project DIUFRO PIA17‐0006. N. Lima acknowledges the support of FCT/Portugal under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01–0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cledir Santos or Ana C. Mesa-Arango.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Velásquez, J.C., Mojica-Figueroa, I.L., Santos, C. et al. MALDI-TOF MS: Foundations and a Practical Approach to the Clinically Relevant Filamentous Fungi Identification. Curr Fungal Infect Rep 15, 162–170 (2021). https://doi.org/10.1007/s12281-021-00423-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-021-00423-9

Keywords

Navigation