Skip to main content

Advertisement

Log in

Should Etest MICs for Yeasts Be Categorized by Reference (BPs/ECVs) or by Etest (ECVs) Cutoffs as Determinants of Emerging Resistance?

  • Clinical Mycology Lab Issues (S Cordoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To summarize the potential clinical usefulness of available Etest echinocandin and amphotericin B ECVs in identifying non-WT-type yeasts.

Recent Findings

In lieu of breakpoints (predictors of clinical response), Etest echinocandin, triazoles, and amphotericin B ECVs have been recently established for certain Candida spp. Reference BPs are only available for echinocandins and triazoles and some Candida spp. The categorical agreement between Etest and reference MICs was mostly evaluated before adjustment of CLSI triazole/echinocandin BPs to current values or using various amphotericin B cutoffs.

Summary

Etest anidulafungin ECVs for C. albicans (0.015 μg/mL), C. glabrata (0.03 μg/ml), C. tropicalis (0.03 μg/mL), and C. krusei (0.06 μg/mL) categorized 65/69 (93%) as non-wild-type isolates (harboring Fks1p/Fks2p mutations). The amphotericin B Etest ECV for C. lusitaniae (0.5 μg/mL) classified 8/9 as non-wild-type and 38/39 (97%) as wild-type isolates, respectively. Similar results were reported for C. glabrata, C. parapsilosis, and Cryptococcus neoformans. Further evaluation is warranted, especially for amphotericin B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cleveland AA, Harrison LH, Farley MM, Hollick R, Stein B, Chiller TM, et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance. PLoS One. 2015;10:e0120452.

    Article  Google Scholar 

  2. McCarty TP, Lockhart SR, Moser SA, Whiddon J, Zurko J, Pham CD, et al. Echinocandin resistance among Candida isolates at an academic medical centre 2005–15: analysis of trends and outcomes. J Antimicrob Chemother. 2018;73:1677–80.

    Article  CAS  Google Scholar 

  3. Jung DS, Farmakiotis D, Jiang Y, Tarrand JJ, Kontoyiannis DP. Uncommon Candida species fungemia among cancer patients, Houston, Texas, USA. Emerg Infect Dis. 2015;21:1942–50. https://doi.org/10.3201/eid2111.150404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Asner SA, Giulieri S, Diezi M, Marchetti O, Sanglard D. Acquired multidrug antifungal resistance in Candida lusitaniae during therapy. Antimicrob Agents Chemother. 2015;59:7715–22. https://doi.org/10.1128/AAC.02204-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Espinel-Ingroff A, Turnidge J. The role of epidemiological cutoff values (ECVs/ECOFFs) in antifungal susceptibility testing and interpretation for uncommon yeasts and moulds. Rev Iberoam Micol. 2016;33:63–75.

    Article  Google Scholar 

  6. • Clinical and Laboratory Standards Institute. Performance standards for antifungal susceptibility testing of yeasts, 1st ed. CLSI supplement M60. 2017; Clinical and Laboratory Standards Institute, Wayne, PA. Reference document providing clinical breakpoints for susceptibility testing of Candida spp.

  7. Zimbeck AJ, Iqbal N, Ahlquist AM, Farley MM, Harrison LH, Chiller T, et al. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance. Antimicrob Agents Chemother. 2010;54:5042–7.

    Article  CAS  Google Scholar 

  8. Lockhart SR, Iqbal N, Cleveland AA, Farley MM, Harrison LH, Bolden CB, et al. Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. J Clin Microbiol. 2012;50:3435–42.

    Article  CAS  Google Scholar 

  9. Castanheira M, Woosley LN, Messer SA, Diekema DJ, Jones RN, Pfaller MA. Frequency of fks mutations among Candida glabrata isolates from a 10-year global collection of bloodstream infection isolates. Antimicrob Agents Chemother. 2014;58:577–80. https://doi.org/10.1128/AAC.01674-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. •• Clinical and Laboratory Standards Institute. Principles and procedures for the development of epidemiological cutoff values for antifungal susceptibility testing. CLSI M57 document, 1st ed. 2016; Clinical and Laboratory Standards Institute, Wayne, PA. Reference document describing the necessary requirements for establishing ECVs.

  11. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts, 4th ed. 2017; CLSI standard M27. Clinical and Laboratory Standards Institute, Wayne, PA.

  12. Arendrup MC, Meletiadis J, Mouton JW, Lagrou K, Hamal P, Guinea J. Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST). Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. EUCAST definitive document E.Def. 2017; 7.3.1.

  13. • Clinical and Laboratory Standards Institute. Epidemiological cutoff values for antifungal susceptibility testing. CLSI supplement M59, 2nd ed. 2018. Clinical and laboratory standards institute, Wayne, PA. Reference document listing the CLSI available ECVs.

  14. bioMerieux SA. Etest antifungal susceptibility testing package insert. 2013; bioMerieux SA, Marcy-lEtoile, France.

  15. bioMerieux SA. Etest performance, interpretative criteria and quality control ranges table. 2013; bioMerieux SA, Marcy-lEtoile, France.

  16. Dannaoui E, Espinel-Ingroff A. Antifungal susceptibly testing by concentration gradient strip (Etest) method, a review. J Fungi. 2019;5:108. https://doi.org/10.3390/jof5040108.

    Article  CAS  Google Scholar 

  17. •• Espinel-Ingroff A, Arendrup M, Canton E, Cordoba S, Dannaoui E, Garcia-Rodriguez J, et al. Multicenter study of method-dependent epidemiological cutoff values for detection of resistance in Candida spp. and Aspergillus spp. to amphotericin B and echinocandins for the Etest agar diffusion method. Antimicrob Agents Chemother. 2017;61:e01792–16. https://doi.org/10.1128/AAC.01792-16International study that defined method-specific ECVs for Etest for 4 antifungal drugs against six Candida species and four Aspergillus species complexes.

    Article  CAS  PubMed  Google Scholar 

  18. • Espinel-Ingroff A, Turnidge J, Alastruey-Izquierdo A, Botterel F, Canton E, Castro C, et al. Method-dependent epidemiological cutoff values for detection of triazole resistance in Candida and Aspergillus species for the Sensititre YeastOne colorimetric broth and Etest agar diffusion methods. Antimicrob Agents Chemother. 2019;63:e01651–18. https://doi.org/10.1128/AAC.01651-18International study (39 laboratories) that defined method-specific ECVs for two commercial methods for four azole drugs against five Candida species and four Aspergillus species complexes.

    Article  CAS  PubMed  Google Scholar 

  19. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1–e50. https://doi.org/10.1093/cid/civ933.

    Article  PubMed  Google Scholar 

  20. Espinel-Ingroff A, Arendrup MC, Pfaller MA, Bonfietti LX, Bustamante B, Canton E, et al. Interlaboratory variability of caspofungin MICs for Candida spp. using CLSI and EUCAST methods: should the clinical laboratory be testing this agent? Antimicrob. Agents Chemother. 2013;57:5836–42.

    Article  CAS  Google Scholar 

  21. Baixench MT, Aoun N, Desnos-Ollivier M, Garcia-Hermoso D, Bretagne S, Ramires S, et al. Acquired resistance to echinocandins in Candida albicans: case report and review. J Antimicrob Chemother. 2007;59:1076–83.

    Article  CAS  Google Scholar 

  22. Desnos-Ollivier M, Dromer F, Dannaoui E. Detection of caspofungin resistance in Candida spp. by Etest. J Clin Microbiol. 2008;46:2389–92.

    Article  CAS  Google Scholar 

  23. • Arendrup MC, Pfaller MA, Danish Fungaemia Study Group. Caspofungin Etest susceptibility testing of Candida species: risk of misclassification of susceptible isolates of C. glabrata and C. krusei when adopting the revised CLSI caspofungin breakpoints. Antimicrob Agents Chemother. 2012;56:396–53968 This study showed that interpretation of Etest MIC values by the CLSI breakpoints may overestimate resistance in someCandidaspecies.

    Google Scholar 

  24. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Moet GJ, Jones RN. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Etest methods with the CLSI broth microdilution method for echinocandin susceptibility testing of Candida species. J Clin Microbiol. 2010;48:1592–9.

    Article  CAS  Google Scholar 

  25. Arendrup MC, Garcia-Effron G, Lass-Florl C, Gomez-Lopez A, Rodriguez-Tudela JL, et al. Echinocandin susceptibility testing of Candida species: comparison of EUCAST EDef 7.1, CLSIM27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and Iso-Sensitest media. Antimicrob Agents Chemother. 2010;54:426–39. https://doi.org/10.1128/AAC.01256-09.

    Article  CAS  PubMed  Google Scholar 

  26. Espinel-Ingroff A, Canton E, Peman J, Martín-Mazuelo E. Comparison of anidulafungin MICs determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27-A3 document) and Etest for Candida species isolates. Antimicrob Agents Chemother. 2010;54:1347–50. https://doi.org/10.1128/AAC.01324-09.

    Article  CAS  PubMed  Google Scholar 

  27. Shields RK, Nguyen MH, Press EG, Updike CL, Clancy CJ. Anidulafungin and micafungin MIC breakpoints are superior to that of caspofungin for identifying FKS mutant Candida glabrata strains and echinocandin resistance. Antimicrob Agents Chemother. 2013;57:6361–5.

    Article  CAS  Google Scholar 

  28. Espinel-Ingroff A, Canton E, Pelaez T, Peman J. Comparison of micafungin MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27-A3 document) and Etest for Candida species isolates. Diagn Microbiol Infect Dis. 2011;70:54–9. https://doi.org/10.1016/j.diagmicrobio.2010.12.010.

    Article  CAS  PubMed  Google Scholar 

  29. Bougnoux ME, Dannaoui E, Accoceberry I, Angoulvant A, Bailly E, Botterel F, et al. Multicenter comparison of the Etest and EUCAST methods for antifungal susceptibility testing of Candida isolates to micafungin. Antimicrob Agents Chemother. 2016;60:5088–91. https://doi.org/10.1128/AAC.00630-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Prigent G, Ait-Ammar N, Levesque E, Fekkar A, Costa JM, El Anbassi S, et al. Echinocandin resistance in Candida species isolates from liver transplant recipients. Antimicrob Agents Chemother. 2017;61:e01229–16. https://doi.org/10.1128/AAC.01229-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marcos-Zambrano LJ, Escribano P, Rueda C, Zaragoza O, Bouza E, Guinea J. Comparison between the EUCAST procedure and the Etest for determination of the susceptibility of Candida species isolates to micafungin. Antimicrob Agents Chemother. 2013;57:5767–70.

    Article  CAS  Google Scholar 

  32. Taj-Aldeen SJ, Salah H, Perez WB, Almaslamani M, Motyl M, AbdulWahab A, et al. Molecular analysis of resistance and detection of non-wild-type strains using Etest epidemiological cutoff values for amphotericin B and echinocandins for bloodstream Candida infections from a tertiary hospital in Qatar. Antimicrob Agents Chemother. 2018;62:e00214–8. https://doi.org/10.1128/AAC.00214-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Bordallo-Cardona MÁ, Sánchez-Carrillo C, Bouza E, Muñoz P, Escribano P, Guinea J. Detection of echinocandin resistant Candida glabrata in blood cultures spiked with different percentages of FKS2 mutants. Antimicrob Agents Chemother. 2019;63:e02004–18. https://doi.org/10.1128/AAC.02004-18Experimental study demonstrating that MIC determination by Etest directly on positive blood culture bottles is reliable for detection of echinocandin resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen MH, Clancy CJ, Yu VL, Yu YC, Morris AJ, Snydman DR, et al. Do in vitro susceptibility data predict the microbiologic response to amphotericin B? Results of a prospective study of patients with Candida fungemia. J Infect Dis. 1998;177:425–30.

    Article  CAS  Google Scholar 

  35. Clancy CJ, Nguyen MH. Correlation between in vitro susceptibility determined by E test and response to therapy with amphotericin B: results from a multicenter prospective study of candidemia. Antimicrob Agents Chemother. 1999;43:1289–90.

    Article  CAS  Google Scholar 

  36. Park BJ, Arthington-Skaggs BA, Hajjeh RA, Iqbal N, Ciblak MA, Lee-Yang W, et al. Evaluation of amphotericin B interpretive breakpoints for Candida bloodstream isolates by correlation with therapeutic outcome. Antimicrob Agents Chemother. 2006;50:1287–92.

    Article  CAS  Google Scholar 

  37. Pfaller MA, Messer SA, Bolmström A. Evaluation of Etest for determining in vitro susceptibility of yeast isolates to amphotericin B. Diagn Microbiol Infect Dis. 1998;32:223–7.

    Article  CAS  Google Scholar 

  38. Metin DY, Hilmioglu-Polat S, Samlioglu P, Doganay-Oflazoglu B, Inci R, Tumbay E. Evaluation of antifungal susceptibility testing with microdilution and Etest methods of Candida blood isolates. Mycopathologia. 2011;172:187–99. https://doi.org/10.1007/s11046-011-9413-y.

    Article  CAS  PubMed  Google Scholar 

  39. Peyron F, Favel A, Michel-Nguyen A, Gilly M, Regli P, Bolmstrom A. Improved detection of amphotericin B-resistant isolates of Candida lusitaniae by Etest. J Clin Microbiol. 2001;39:339–42.

    Article  CAS  Google Scholar 

  40. Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother. 1995;39:2550–22.

    Article  Google Scholar 

  41. Krogh-Madsen M, Arendrup MC, Heslet L, Knudsen JD. Amphotericin B and caspofungin resistance in Candida glabrata isolates recovered from a critically ill patient. Clin Infect Dis. 2006;42:938–44.

    Article  CAS  Google Scholar 

  42. Lozano-Chiu M, Paetznick VL, Ghannoum MA, Rex JH. Detection of resistance to amphotericin B among Cryptococcus neoformans clinical isolates: performances of three different media assessed by using E-test and National Committee for Clinical Laboratory Standards M27-A methodologies. J Clin Microbiol. 1998;36:2817–22.

    Article  CAS  Google Scholar 

  43. Anaissie EJ, Karyotakis NC, Hachem R, Dignani MC, Rex JH, Paetznick V. Correlation between in vitro and in vivo activity of antifungal agents against Candida species. J Infect Dis. 1994;170:384–9.

    Article  CAS  Google Scholar 

  44. Atkinson BJ, Lewis RE, Kontoyiannis DP. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol. 2008;46:541–6. https://doi.org/10.1080/13693780801968571.

    Article  CAS  PubMed  Google Scholar 

  45. Lozano-Chiu M, Nelson PW, Lancaster M, Pfaller MA, Rex JH. Lot-to-lot variability of antibiotic medium 3 used for testing susceptibility of Candida isolates to amphotericin B. J Clin Microbiol. 1997;35:270–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. John Turnidge, University of Adelaide, Adelaide, Australia, for his collaboration on the definition of the amphotericin B Etest ECV for C. lusitaniae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Espinel-Ingroff.

Ethics declarations

Conflict of Interest

Eric Dannaoui reports grants from Gilead, grants from MSD, personal fees from Pfizer, personal fees from Astellas, travel grant from MSD, and travel grant from Pfizer outside the submitted work. Ana Espinel-Ingroff declares no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinel-Ingroff, A., Dannaoui, E. Should Etest MICs for Yeasts Be Categorized by Reference (BPs/ECVs) or by Etest (ECVs) Cutoffs as Determinants of Emerging Resistance?. Curr Fungal Infect Rep 14, 120–129 (2020). https://doi.org/10.1007/s12281-020-00378-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00378-3

Keywords

Navigation