Skip to main content

Advertisement

Log in

Diagnosing Invasive Mold Infections: What Is Next

  • Current Management of Fungal Infections (J Maertens, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Currently, microbiological diagnosis of invasive mold infections is based largely on culture, direct microscopy, PCR, or antigen (such as β-D-glucan or galactomannan)-based tests. In this review, we look at novel and experimental diagnostic tests for invasive mold infections.

Recent Findings

Several new techniques have been proposed, and are in different stages of development. The JF5-antibody-based lateral flow device has recently been commercialized, and is closest to uptake in routine care. Other tests, such as the MAb476-antibody-based urine lateral flow device, gliotoxin or bis(methylthio)gliotoxin, mold-specific T cells, exhaled breath analysis, siderophores, mass spectrometry serum disaccharide, or cytokine analysis, are at an earlier stage of development.

Summary

Most proposed diagnostic tests for invasive mold infections are in the experimental stage and are not ready for routine clinical use. They still require further characterization and analytical and clinical validation by independent research groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Lass-Flörl C, Cuenca-Estrella M. Changes in the epidemiological landscape of invasive mould infections and disease. J Antimicrob Chemother. 2017;72:i5–11.

    Article  Google Scholar 

  2. Lamoth F, Calandra T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother. 2017;72:i19–28.

    Article  CAS  Google Scholar 

  3. Mennink-Kersten MA, Donnelly JP, Verweij PE. Detection of circulating galactomannan for the diagnosis and management of invasive aspergillosis. Lancet Infect Dis. 2004;4:349–57.

    Article  CAS  Google Scholar 

  4. Marty FM, Koo S. Role of (1→3)-β-D-glucan in the diagnosis of invasive aspergillosis. Med Mycol. 2009;47:S233–40.

    Article  CAS  Google Scholar 

  5. Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: a meta-analysis. Clin Infect Dis. 2006;42:1417–727.

    Article  CAS  Google Scholar 

  6. Zou M, Tang L, Zhao S, Zhao Z, Chen L, Chen P, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. PLoS One 2012;7.

  7. Leeflang MMG, Debets-Ossenkopp YJ, Wang J, Visser CE, Scholten RJPM, Hooft L, et al. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev. 2015;CD007394.

  8. Karageorgopoulos DE, Qu J-M, Korbila IP, Zhu Y-G, Vasileiou VA, Falagas ME. Accuracy of β-D-glucan for the diagnosis of pneumocystis jirovecii pneumonia: a meta-analysis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2013;19:39–49.

    CAS  Google Scholar 

  9. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52:750–70.

    Article  CAS  Google Scholar 

  10. Onishi A, Sugiyama D, Kogata Y, Saegusa J, Sugimoto T, Kawano S, et al. Diagnostic accuracy of serum 1,3-β-D-glucan for pneumocystis jiroveci pneumonia, invasive candidiasis, and invasive aspergillosis: systematic review and meta-analysis. J Clin Microbiol. 2012;50:7–15.

    Article  CAS  Google Scholar 

  11. He S, Hang J-P, Zhang L, Wang F, Zhang D-C, Gong F-H. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect Wei Mian Yu Gan Ran Za Zhi. 2015;48:351–61.

    Article  CAS  Google Scholar 

  12. Pauw BD, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of cancer/invasive fungal infections cooperative group and the National Institute of Allergy and Infectious Diseases mycoses study group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46:1813–21.

    Article  Google Scholar 

  13. Arvanitis M, Ziakas PD, Zacharioudakis IM, Zervou FN, Caliendo AM, Mylonakis E. PCR in diagnosis of invasive aspergillosis: a meta-analysis of diagnostic performance. J Clin Microbiol. 2014;52:3731–42.

    Article  CAS  Google Scholar 

  14. Millon L, Larosa F, Lepiller Q, Legrand F, Rocchi S, Daguindau E, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56:e95–101.

    Article  CAS  Google Scholar 

  15. Machouart M, Larché J, Burton K, Collomb J, Maurer P, Cintrat A, et al. Genetic identification of the main opportunistic Mucorales by PCR-restriction fragment length polymorphism. J Clin Microbiol. 2006;44:805–10.

    Article  CAS  Google Scholar 

  16. Baldin C, Soliman S, Jeon H, Gebremariam T, Alkhazraji S, Bruno V, et al. PCR-based diagnosis of Mucormycosis targeting Mucorales-specific genes. Open Forum Infect Dis. 2017;4:S612.

    Article  Google Scholar 

  17. Ciardo DE, Lucke K, Imhof A, Bloemberg GV, Böttger EC. Systematic internal transcribed spacer sequence analysis for identification of clinical mold isolates in diagnostic mycology: a 5-year study. J Clin Microbiol. 2010;48:2809–13.

    Article  CAS  Google Scholar 

  18. Bezdicek M, Lengerova M, Ricna D, Weinbergerova B, Kocmanova I, Volfova P, et al. Rapid detection of fungal pathogens in bronchoalveolar lavage samples using panfungal PCR combined with high resolution melting analysis. Med Mycol. 2016;54:714–24.

    Article  CAS  Google Scholar 

  19. Valero C, de la Cruz-Villar L, Zaragoza Ó, Buitrago MJ. New panfungal real-time PCR assay for diagnosis of invasive fungal infections. J Clin Microbiol. 2016;54:2910–8.

    Article  CAS  Google Scholar 

  20. Thornton CR. Development of an Immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol. 2008;15:1095–105.

    Article  CAS  Google Scholar 

  21. Swanink CM, Meis JF, Rijs AJ, Donnelly JP, Verweij PE. Specificity of a sandwich enzyme-linked immunosorbent assay for detecting Aspergillus galactomannan. J Clin Microbiol. 1997;35:257–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Mikulska M, Furfaro E, Del Bono V, Gualandi F, Raiola AM, Molinari MP, et al. Galactomannan testing might be useful for early diagnosis of fusariosis. Diagn Microbiol Infect Dis. 2012;72:367–9.

    Article  CAS  Google Scholar 

  23. Dalle F, Charles PE, Blanc K, Caillot D, Chavanet P, Dromer F, et al. Cryptococcus neoformans galactoxylomannan contains an epitope(s) that is cross-reactive with aspergillus galactomannan. J Clin Microbiol. 2005;43:2929–31.

    Article  CAS  Google Scholar 

  24. Huang Y-T, Hung C-C, Liao C-H, Sun H-Y, Chang S-C, Chen Y-C. Detection of circulating galactomannan in serum samples for diagnosis of Penicillium marneffei infection and cryptococcosis among patients infected with human immunodeficiency virus. J Clin Microbiol. 2007;45:2858–62.

    Article  Google Scholar 

  25. Metan G, Keklik M, Dinç G, Pala Ç, Yıldırım A, Saraymen B, et al. Performance of galactomannan antigen, beta-d-glucan, and Aspergillus-lateral-flow device for the diagnosis of invasive aspergillosis. Indian J Hematol Blood Transfus Off J Indian Soc Hematol Blood Transfus. 2017;33:87–92.

    Article  Google Scholar 

  26. •• Heldt S, Hoenigl M. Lateral flow assays for the diagnosis of invasive aspergillosis: current status. Curr Fungal Infect Rep. 2017;11:45–51. Comprehensive overview of lateral flow devices.

    Article  Google Scholar 

  27. Pan Z, Fu M, Zhang J, Zhou H, Fu Y, Zhou J. Diagnostic accuracy of a novel lateral-flow device in invasive aspergillosis: a meta-analysis. J Med Microbiol. 2015;64:702–7.

    Article  CAS  Google Scholar 

  28. White PL, Parr C, Thornton C, Barnes RA. Evaluation of real-time PCR, galactomannan enzyme-linked immunosorbent assay (ELISA), and a novel lateral-flow device for diagnosis of invasive aspergillosis. J Clin Microbiol. 2013;51:1510–6.

    Article  CAS  Google Scholar 

  29. Held J, Schmidt T, Thornton CR, Kotter E, Bertz H. Comparison of a novel Aspergillus lateral-flow device and the Platelia galactomannan assay for the diagnosis of invasive aspergillosis following haematopoietic stem cell transplantation. Infection. 2013;41:1163–9.

    Article  CAS  Google Scholar 

  30. Hoenigl M, Eigl S, Heldt S, Duettmann W, Thornton C, Prattes J. Clinical evaluation of the newly formatted lateral-flow device for invasive pulmonary aspergillosis. Mycoses. 2018;61:40–3.

    Article  Google Scholar 

  31. Johnson GL, Shannon M, Thornton CR, Agrawal SG, Bustin SA. Proximity ligation assay for the sensitive, specific and early diagnosis of invasive fungal disease. Mycoses. 2013 p. 48. Available from: https://insights.ovid.com/mycoses/mycos/2013/10/003/proximity-ligation-assay-sensitive-specific-early/94/00006021

  32. Johnson E, Johnson G, Shannon M, Thornton C, Agrawal S, Lass-Flörl C, et al. Proximity ligation assay for the early detection of invasive aspergillosis. Denmark: Copenhagen; 2015. Available from: https://www.escmid.org/escmid_publications/escmid_elibrary/material/?mid=22380

    Google Scholar 

  33. Dufresne SF, Datta K, Li X, Dadachova E, Staab JF, Patterson TF, et al. Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS One. 2012;e42736:7.

    Google Scholar 

  34. Marr KA, Datta K, Mehta S, Ostrander DB, Rock M, Francis J, et al. Urine Antigen Detection as an Aid to Diagnose Invasive Aspergillosis. Clin Infect Dis. 2018; Available from: https://doi.org/10.1093/cid/ciy326/4976464

  35. Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FeNO) for clinical applications. Am J Respir Crit Care Med. 2011;184:602–15.

    Article  CAS  Google Scholar 

  36. Graham DY, Klein PD, Evans DJ, Evans DG, Alpert LC, Opekun AR, et al. Campylobacter pylori detected noninvasively by the 13C-urea breath test. Lancet Lond Engl. 1987;1:1174–7.

    Article  CAS  Google Scholar 

  37. Phillips M, Boehmer JP, Cataneo RN, Cheema T, Eisen HJ, Fallon JT, et al. Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). J Heart Lung Transplant Off Publ Int Soc Heart Transplant. 2004;23:701–8.

    Article  Google Scholar 

  38. •• Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, et al. Breath analysis as a potential and non-invasive frontier in disease diagnosis: an overview. Metabolites. 2015;5:3–55. Overview of breath based diagnostics.

    Article  Google Scholar 

  39. Chambers ST, Syhre M, Murdoch DR, McCartin F, Epton MJ. Detection of 2-Pentylfuran in the breath of patients with Aspergillus fumigatus. Med Mycol. 2009;47:468–76.

    Article  CAS  Google Scholar 

  40. Syhre M, Scotter JM, Chambers ST. Investigation into the production of 2-Pentylfuran by Aspergillus fumigatus and other respiratory pathogens in vitro and human breath samples. Med Mycol. 2008;46:209–15.

    Article  CAS  Google Scholar 

  41. Bhandari S, Chambers S, Pearson J, Syhre M, Epton M, Scott-Thomas A. Determining the limits and confounders for the 2-pentyl furan breath test by gas chromatography/mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879:2815–20.

    Article  CAS  Google Scholar 

  42. Heddergott C, Calvo AM, Latgé JP. The Volatome of Aspergillus fumigatus. Eukaryot Cell. 2014;13:1014–25.

    Article  CAS  Google Scholar 

  43. Koo S, Thomas HR, Daniels SD, Lynch RC, Fortier SM, Shea MM, et al. A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clin Infect Dis. 2014;59:1733–40.

    Article  CAS  Google Scholar 

  44. Bikov A, Paschalaki K, Logan-Sinclair R, Horváth I, Kharitonov SA, Barnes PJ, et al. Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry. BMC Pulm Med. 2013;13:43.

    Article  CAS  Google Scholar 

  45. Thekedar B, Oeh U, Szymczak W, Hoeschen C, Paretzke HG. Influences of mixed expiratory sampling parameters on exhaled volatile organic compound concentrations. J Breath Res. 2011;5:016001.

    Article  CAS  Google Scholar 

  46. de Heer K, van der Schee MP, Zwinderman K, vanden Berk IAH, Visser CE, van Oers R, et al. Electronic nose technology for detection of invasive pulmonary aspergillosis in prolonged chemotherapy-induced neutropenia: a proof-of-principle study. J Clin Microbiol. 2013;51:1490–5.

    Article  Google Scholar 

  47. Wang Y, Chen L, Liu X, Cheng D, Liu G, Liu Y, et al. Detection of Aspergillus fumigatus pulmonary fungal infections in mice with 99mTc-labeled MORF oligomers targeting ribosomal RNA. Nucl Med Biol. 2013;40:89–96.

    Article  Google Scholar 

  48. Davies G, Rolle A-M, Maurer A, Spycher PR, Schillinger C, Solouk-Saran D, et al. Towards translational ImmunoPET/MR imaging of invasive pulmonary aspergillosis: the humanised monoclonal antibody JF5 detects Aspergillus lung infections in vivo. Theranostics. 2017;7:3398–414.

    Article  CAS  Google Scholar 

  49. Rolle A-M, Hasenberg M, Thornton CR, Solouk-Saran D, Männ L, Weski J, et al. ImmunoPET/MR imaging allows specific detection of Aspergillus fumigatus lung infection in vivo. Proc Natl Acad Sci U S A. 2016;113:E1026–33.

    Article  CAS  Google Scholar 

  50. Haas H, Petrik M, Decristoforo C. An iron-mimicking, Trojan horse-entering fungi—has the time come for molecular imaging of fungal infections? PLoS Pathog. 2015;11:e1004568.

    Article  Google Scholar 

  51. Orasch T, Prattes J, Faserl K, Eigl S, Düttmann W, Lindner H, et al. Bronchoalveolar lavage triacetylfusarinine C (TAFC) determination for diagnosis of invasive pulmonary aspergillosis in patients with hematological malignancies. J Inf Secur. 2017;75:370–3.

    Google Scholar 

  52. Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, et al. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med Off Publ Soc Nucl Med. 2010;51:639–45.

    CAS  Google Scholar 

  53. Petrik M, Franssen GM, Haas H, Laverman P, Hörtnagl C, Schrettl M, et al. Preclinical evaluation of two 68Ga-siderophores as potential radiopharmaceuticals for Aspergillus fumigatus infection imaging. Eur J Nucl Med Mol Imaging. 2012;39:1175–83.

    Article  CAS  Google Scholar 

  54. Petrik M, Haas H, Laverman P, Schrettl M, Franssen GM, Blatzer M, et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol Imaging Biol. 2014;16:102–8.

    Article  Google Scholar 

  55. Lewis RE, Wiederhold NP, Chi J, Han XY, Komanduri KV, Kontoyiannis DP, et al. Detection of gliotoxin in experimental and human aspergillosis. Infect Immun. 2005;73:635–7.

    Article  CAS  Google Scholar 

  56. Waring P, Newcombe N, Edel M, Lin QH, Jiang H, Sjaarda A, et al. Cellular uptake and release of the immunomodulating fungal toxin gliotoxin. Toxicon Off J Int Soc Toxinology. 1994;32:491–504.

    Article  CAS  Google Scholar 

  57. Dolan SK, Bock T, Hering V, Owens RA, Jones GW, Blankenfeldt W, et al. Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in aspergillus fumigatus. Open Biol 2017;7.

  58. Domingo MP, Colmenarejo C, Martínez-Lostao L, Müllbacher A, Jarne C, Revillo MJ, et al. Bis(methyl)gliotoxin proves to be a more stable and reliable marker for invasive aspergillosis than gliotoxin and suitable for use in diagnosis. Diagn Microbiol Infect Dis. 2012;73:57–64.

    Article  CAS  Google Scholar 

  59. Hammarström H, Aspelund AS, Christensson B, Heußel CP, Isaksson J, Kondori N, et al. Prospective evaluation of a combination of fungal biomarkers for the diagnosis of invasive fungal disease in high-risk hematology patients. Mycoses 2018. Available from: https://doi.org/10.1111/myc.12773

  60. Sugui JA, Rose SR, Nardone G, Swamydas M, Lee C-CR, Kwon-Chung KJ, et al. Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Sci Rep. 2017;7:10977.

    Article  Google Scholar 

  61. Sendid B, Poissy J, François N, Mery A, Courtecuisse S, Krzewinski F, et al. Preliminary evidence for a serum disaccharide signature of invasive Candida albicans infection detected by MALDI mass spectrometry. Clin Microbiol Infect. 2015;21:88.e1–6.

    Article  CAS  Google Scholar 

  62. Johnson GL, Sarker S-J, Nannini F, Ferrini A, Taylor E, Lass-Flörl C, et al. Aspergillus-specific lateral-flow device and real-time PCR testing of bronchoalveolar lavage fluid: a combination biomarker approach for clinical diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol. 2015;53:2103–8.

    Article  CAS  Google Scholar 

  63. Boch T, Spiess B, Cornely OA, Vehreschild JJ, Rath PM, Steinmann J, et al. Diagnosis of invasive fungal infections in haematological patients by combined use of galactomannan, 1,3-β-D-glucan, Aspergillus PCR, multifungal DNA-microarray, and Aspergillus azole resistance PCRs in blood and bronchoalveolar lavage samples: results of a prospective multicentre study. Clin Microbiol Infect. 2016;22:862–8.

    Article  CAS  Google Scholar 

  64. Heldt S, Eigl S, Prattes J, Flick H, Rabensteiner J, Prüller F, et al. Levels of interleukin (IL)-6 and IL-8 are elevated in serum and bronchoalveolar lavage fluid of haematological patients with invasive pulmonary aspergillosis. Mycoses. 2017;60:818–25.

    Article  CAS  Google Scholar 

  65. Gonçalves SM, Lagrou K, Rodrigues CS, Campos CF, Bernal-Martínez L, Rodrigues F, Silvestre R, Alcazar-Fuoli L, Maertens JA, Cunha C, Carvalho A Evaluation of bronchoalveolar lavage fluid cytokines as biomarkers for invasive pulmonary aspergillosis in at-risk patients. Front Microbiol 2017;8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5712575/

  66. Potenza L, Barozzi P, Vallerini D, Bosco R, Quadrelli C, Mediani L, et al. Diagnosis of invasive aspergillosis by tracking Aspergillus-specific T cells in hematologic patients with pulmonary infiltrates. Leukemia. 2007;21:578–81.

    Article  CAS  Google Scholar 

  67. Camargo JF, Husain S. Immune correlates of protection in human invasive aspergillosis. Clin Infect Dis. 2014;59:569–77.

    Article  Google Scholar 

  68. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A, et al. Characterization of specific immune responses to different Aspergillus antigens during the course of invasive aspergillosis in hematologic patients. PLoS One. 2013;8:e74326.

    Article  CAS  Google Scholar 

  69. Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Zanetti E, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood. 2011;118:5416–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toine Mercier.

Ethics declarations

Conflict of Interest

Toine Mercier has received lecture honoraria from Gilead and travel support from MSD and Gilead.

Johan Maertens has received research grants, travel support, and lecture honoraria from Gilead, MSD, Basilea Pharmaceuticals, Astellas, and Pfizer and has participated in advisory boards for MSD, Gilead, Astellas, Basilea, Pfizer, F2G, Amplyx, Scynexis, and Cidara.

Ellen Guldentops and Ruth Van Daele declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Current Management of Fungal Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercier, T., Guldentops, E., Van Daele, R. et al. Diagnosing Invasive Mold Infections: What Is Next. Curr Fungal Infect Rep 12, 161–169 (2018). https://doi.org/10.1007/s12281-018-0322-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-018-0322-0

Keywords

Navigation