Skip to main content

Advertisement

Log in

Fungal Biomarkers, Antifungal Susceptibility Testing, and Therapeutic Drug Monitoring—Practical Applications for the Clinician in a Tertiary Care Center

  • Pharmacology and Pharmacodynamics of Antifungal Agents (P Gubbins, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Invasive fungal infections (IFIs) have increased steadily over the past several decades. The incidence of IFIs with reduced antifungal susceptibility or resistance is also on the rise. These IFIs carry significant morbidity and mortality. Among the many reasons for these poor outcomes have been the delays in diagnosis and adequate treatment of these infections. Therefore, considerable research has been directed towards earlier diagnostic strategies using biomarkers, the development and standardization of antifungal susceptible testing (AST), as well as therapeutic drug monitoring (TDM) of antifungal agents. This review will provide a summary overview of these areas and their practical application to clinicians practicing in tertiary care centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kontoyiannis DP. Invasive mycoses: strategies for effective management. Am J Med. 2012;125(1, Supplement):S25–38. This article provides a thorough yet concise review of antifungal management strategies.

    Article  CAS  PubMed  Google Scholar 

  2. Ostrosky-Zeichner L. Invasive mycoses: diagnostic challenges. Am J Med. 2012;25(1, Supplement):S14–24. This article provides a thorough yet concise review of the diagnostic issues with invasive fungal infections as well as an up-to-date review of biomarkers.

    Article  Google Scholar 

  3. Alangaden GJ. Nosocomial fungal infections: epidemiology, infection control, and prevention. Infect Dis Clin North Am. 2011;25(1):201–25.

    Article  PubMed  Google Scholar 

  4. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1, Supplement):S3–S13. This article provides a concise review of antifungal susceptibility testing coupled with a resistance review.

    Article  CAS  PubMed  Google Scholar 

  5. Schuetz AN. Invasive fungal infections: biomarkers and molecular approaches to diagnosis. Clin Lab Med. 2013;33(3):505–25. A second review of fungal biomarkers is included because this author provides a slightly different point of view with reference to biomarker study findings compared to that of Ostrosky-Zeichner L.

    Article  PubMed  Google Scholar 

  6. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Klont RR, Mennink-Kersten MASH, Verweij PE. Utility of aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis. 2004;39(10):1467–74.

    Article  PubMed  Google Scholar 

  8. Hsu L, Ding Y, Phua J, Koh L, Chan D, Khoo K, et al. Galactomannan testing of bronchoalveolar lavage fluid is useful for diagnosis of invasive pulmonary aspergillosis in hematology patients. BMC Infect Dis. 2010;10(1):44.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Husain S, Clancy CJ, Nguyen MH, Swartzentruber S, Leather H, LeMonte AM, et al. Performance characteristics of the Platelia Aspergillus enzyme immunoassay for detection of Aspergillus galactomannan antigen in bronchoalveolar lavage fluid. Clin Vaccine Immunol. 2008;15(12):1760–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Maertens J, Maertens V, Theunissen K, Meersseman W, Meersseman P, Meers S, et al. Bronchoalveolar lavage fluid galactomannan for the diagnosis of invasive pulmonary aspergillosis in patients with hematologic diseases. Clin Infect Dis. 2009;49:1688–93.

    Article  PubMed  Google Scholar 

  11. Meersseman W, Lagrou K, Maertens J, Wilmer A, Hermans G, Vanderschueren S, et al. Galactomannan in bronchoalveolar lavage fluid. A tool for diagnosing aspergillosis in intensive care unit patients. Am J Respir Crit Care Med. 2008;177:27–34.

    Article  PubMed  Google Scholar 

  12. Sulahian A, Porcher R, Bergeron A, Touratier S, Raffoux E, Menotti J, et al. Use and limits of (1–3)-β-D-glucan assay (Fungitell), compared to galactomannan determination (Platelia Aspergillus), for diagnosis of invasive aspergillosis. J Clin Microbiol. 2014;52(7):2328–33.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Hachem RY, Kontoyiannis DP, Chemaly RF, Jiang Y, Reitzel R, Raad I. Utility of galactomannan enzyme immunoassay and (1,3) β-D-glucan in diagnosis of invasive fungal infections: low sensitivity for Aspergillus fumigatus infection in hematologic malignancy patients. J Clin Microbiol. 2009;47(1):129–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Marchetti O, Lamoth F, Mikulska M, Viscoli C, Verweij P, Bretagne S, et al. ECIL recommendations for the use of biological markers for the diagnosis of invasive fungal diseases in leukemic patients and hematopoietic SCT recipients. Bone Marrow Transplant. 2012;47(6):846–54.

    Article  CAS  PubMed  Google Scholar 

  15. Clancy CJ, Jaber RA, Leather HL, Wingard JR, Staley B, Wheat LJ, et al. Bronchoalveolar lavage galactomannan in diagnosis of invasive pulmonary aspergillosis among solid-organ transplant recipients. J Clin Microbiol. 2007;45:1759–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Aguado JM, Vázquez L, Fernández-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, et al. Serum galactomannan versus a combination of galactomannan and polymerase chain reaction-based Aspergillus DNA detection for early therapy of invasive aspergillosis in high-risk hematological patients: a randomized controlled trial. Clin Infect Dis. 2015;60(3):405–14.

    Article  PubMed  Google Scholar 

  17. Park SH, Choi S, Lee D, Choi J, Kim S, Kwon J, et al. Serum galactomannan strongly correlates with outcome of invasive aspergillosis in acute leukaemia patients. Mycoses. 2011;54(6):523–30.

    Article  PubMed  Google Scholar 

  18. Teering S, Verreth A, Peeters A, Van Regenmortel N, De Laet I, Schoonheydt K, et al. Prognostic value of serum galactomannan in mixed ICU patients: a retrospective observational study. Anaesth Intensive Ther. 2014;46(3):145–54.

    Google Scholar 

  19. Mousset S, Buchheidt D, Heinz W, et al. Treatment of invasive fungal infections in cancer patients-updated recommendations of the infectious diseases working party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol. 2014;93(1):13–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tan BH, Low JGH, Chlebicka NL, Kurup A, Cheah FK, Lin RTP, et al. Galactomannan-guided preemptive vs. empirical antifungals in the persistently febrile neutropenic patient: a prospective randomized study. Int J Infect Dis. 2011;5;15(5):e350–6.

    Article  Google Scholar 

  21. Morrissey CO, Chen SC, Sorrell TC, Milliken S, Bardy PG, Bradstock KF, et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: a randomised controlled trial. Lancet Infect Dis. 2013;6;13(6):519–28.

    Article  Google Scholar 

  22. Koo S, Bryar JM, Baden LR, Marty FM. Prognostic features of galactomannan antigenemia in galactomannan-positive invasive aspergillosis. J Clin Microbiol. 2010;48(4):1255–60.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Maertens J, Buvé K, Theunissen K, Meersseman W, Verbeken E, Verhoef G, et al. Galactomannan serves as a surrogate endpoint for outcome of pulmonary invasive aspergillosis in neutropenic hematology patients. Cancer. 2009;115(2):355–62.

    Article  PubMed  Google Scholar 

  24. van Hal SJ, Gilroy NM, Morrissey CO, Worth LJ, Szer J, Tam CS, et al. Survey of antifungal prophylaxis and fungal diagnostic tests employed in malignant haematology and haemopoietic stem cell transplantation (HSCT) in Australia and New Zealand. Intern Med J. 2014;44(12b):1277–82.

    Article  PubMed  Google Scholar 

  25. Prasad P, Fishman JA. Impact and cost of the serum galactomannan assay at a tertiary care facility. Transplantation. 2014;98(7):773–80. This study reviewed their internal data with regard to GM testing and therapeutic decision-making in a tertiary care center. They determined that their institution had a low rate of GM positive tests but a significant volume of tests ordered. Equally, they discovered that antifungal therapy decisions were made prior to GM test information. The results further established a significant cost per one positive test.

    Article  CAS  PubMed  Google Scholar 

  26. Orlopp K, von Lilienfeld-Toal M, Marklein G, Reiffert SM, Welter A, Hahn-Ast C, et al. False positivity of the Aspergillus galactomannan Platelia ELISA because of piperacillin/tazobactam treatment: does it represent a clinical problem? J Antimicrob Chemother. 2008;62(5):1109–12.

    Article  CAS  PubMed  Google Scholar 

  27. Martín-Rabadán P, Gijón P, Alonso Fernández R, Ballesteros M, Anguita J, Bouza E. False-positive Aspergillus antigenemia due to blood product conditioning fluids. Clin Infect Dis. 2012;55(4):e22–7.

    Article  PubMed  Google Scholar 

  28. Girmenia C, Santilli S, Ballarò D, Del Giudice I, Armiento D, Mauro FR. Enteral nutrition may cause false-positive results of Aspergillus galactomannan assay in absence of gastrointestinal diseases. Mycoses. 2011;54(6):e883–4.

    Article  PubMed  Google Scholar 

  29. Petraitiene R, Petraitis V, Witt JR, Durkin MM, Bacher JD, Wheat LJ, et al. Galactomannan antigenemia after infusion of gluconate-containing Plasma-Lyte. J Clin Microbiol. 2011;49(12):4330–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lamoth F, Cruciani M, Mengoli C, Castagnola E, Lortholary O, Richardson M, et al. β-Glucan Antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis. 2012;54(5):633–43.

    Article  PubMed  Google Scholar 

  31. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52(6):750–70.

    Article  CAS  PubMed  Google Scholar 

  32. Odabasi Z, Mattiuzzi G, Estey E, Kantarjian H, Saeki F, Ridge RJ, et al. β-D-glucan as a diagnostic adjunct for invasive fungal infections: validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. Clin Infect Dis. 2004;39(2):199–205.

    Article  CAS  PubMed  Google Scholar 

  33. Jaijakul S, Vazquez JA, Swanson RN, Ostrosky-Zeichner L. (1,3)-β-D-glucan as a prognostic marker of treatment response in invasive candidiasis. Clin Infect Dis. 2012;55(4):521–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mohr JF, Sims C, Paetznick V, Rodriguez J, Finkelman MA, Rex JH, et al. Prospective survey of (1 → 3)-β-D-glucan and its relationship to invasive candidiasis in the surgical intensive care unit setting. J Clin Microbiol. 2011;49(1):58–61.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Senn L, Robinson JO, Schmidt S, Knaup M, Asahi N, Satomura S, et al. 1,3-β-D-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. Clin Infect Dis. 2008;46(6):878–85.

    Article  CAS  PubMed  Google Scholar 

  36. Mikulska M, Furfaro E, Del Bono V, Gualandi F, Van Lint MT, Miletich F, et al. Persistence of a positive (1,3)-β-D-glucan test after clearance of candidemia in hematopoietic stem cell transplant recipients. Clin Vaccine Immunol. 2011;18(3):518–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. He S, Hang J, Zhang L, Wang F, Zhang D, Gong F. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect (0).

  38. Hoenigl M, Prattes J, Spiess B, Wagner J, Prueller F, Raggam RB, et al. Performance of galactomannan, beta-D-glucan, Aspergillus lateral-flow device, conventional culture, and PCR tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Clin Microbiol. 2014;52(6):2039–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Damiani C, Le Gal S, Goin N, Di Pizio P, Da Costa C, Virmaux M, et al. Usefulness of (1,3) β-D-glucan detection in bronchoalveolar lavage samples in Pneumocystis pneumonia and Pneumocystis pulmonary colonization. J Med Mycol. 2015;3;25(1):36–43.

    Article  Google Scholar 

  40. Hsu JL, Ruoss SJ, Bower ND, Lin M, Holodniy M, Stevens DA. Diagnosing invasive fungal disease in critically ill patients. Crit Rev Microbiol. 2011;37(4):277–312.

    Article  CAS  PubMed  Google Scholar 

  41. Alanio A, Bretagne S. Difficulties with molecular diagnostic tests for mould and yeast infections: where do we stand? Clin Microbiol Infect. 2014;20:36–41.

    Article  CAS  PubMed  Google Scholar 

  42. Kourkoumpetis TK, Fuchs BB, Coleman JJ, Desalermos A, Mylonakis E. Polymerase chain reaction-based assays for the diagnosis of invasive fungal infections. Clin Infect Dis. 2012;54(9):1322–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Garcia-Effron G, Dilger A, Alcazar-Fuoli L, Park S, Mellado E, Perlin DS. Rapid detection of triazole antifungal resistance in Aspergillus fumigatus. J Clin Microbiol. 2008;46(4):1200–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnelly JP. Use of PCR for diagnosis of invasive aspergillosis: systematic review and meta-analysis. Lancet Infect Dis. 2009;2;9(2):89–96.

    Article  Google Scholar 

  45. Rogers TR, Morton CO, Springer J, Conneally E, Heinz W, Kenny C, et al. Combined real-time PCR and galactomannan surveillance improves diagnosis of invasive aspergillosis in high risk patients with haematological malignancies. Br J Haematol. 2013;161(4):517–24.

    Article  CAS  PubMed  Google Scholar 

  46. Pini P, Bettua C, Orsi CF, Venturelli C, Faglioni L, Forghieri F, et al. Clinical performance of a commercial real-time PCR assay for Aspergillus DNA detection in serum samples from high-risk patients: comparison with a galactomannan enzyme immunoassay. Eur J Clin Microbiol Infect Dis. 2015;34(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  47. Reinwald M, Hummel M, Kovalevskaya E, Spiess B, Heinz WJ, Vehreschild JJ, et al. Therapy with antifungals decreases the diagnostic performance of PCR for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients with haematological malignancies. J Antimicrob Chemother. 2012;67(9):2260–7.

    Article  CAS  PubMed  Google Scholar 

  48. Heng S, Chen SC, Morrissey CO, Thursky K, Manser RL, De Silva HD, et al. Clinical utility of Aspergillus galactomannan and PCR in bronchoalveolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in patients with haematological malignancies. Diagn Microbiol Infect Dis. 2014;7;79(3):322–7.

    Article  Google Scholar 

  49. Pfaller MA, Rex JH, Rinaldi MG. Antifungal susceptibility testing: technical advances and potential clinical applications. Clin Infect Dis. 1997;24(5):776–84.

    Article  CAS  PubMed  Google Scholar 

  50. Eschenauer GA, Carver PL. The evolving role of antifungal susceptibility testing. Pharmacother J Human Pharmacol Drug Ther. 2013;33(5):465–75. The authors provide a state of the art review of antifungal susceptibility testing. The graphically display current susceptibility breakpoints provide information in an easy to digest format with solid examples to further illustrate their concepts.

    Article  CAS  Google Scholar 

  51. Pfaller MA, Diekema DJ, Rex JH, Espinel-Ingroff A, Johnson EM, Andes D, et al. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol. 2006;44(3):819–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Pfaller MA, Diekema DJ, Sheehan DJ. Interpretive breakpoints for fluconazole and Candida revisited: a blueprint for the future of antifungal susceptibility testing. Clin Microbiol Rev. 2006;19(2):435–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Pfaller MA, Diekema DJ, Ostrosky-Zeichner L, Rex JH, Alexander BD, Andes D, et al. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol. 2008;46(8):2620–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat. 2010;12;13(6):180–95.

    Article  Google Scholar 

  55. Rex JH, Pfaller MA, Galgiani JN, Bartlett MS, Espinel-Ingroff A, Ghannoum MA, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Clin Infect Dis. 1997;24(2):235–47.

    Article  CAS  PubMed  Google Scholar 

  56. Rex JH, Pfaller MA, Walsh TJ, Chaturvedi V, Espinel-Ingroff A, Ghannoum MA, et al. Antifungal susceptibility testing: practical aspects and current challenges. Clin Microbiol Rev. 2001;14(4):643–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Alastruey-Izquierdo A, Cuenca-Estrella M. EUCAST and CLSI: how to assess in vitro susceptibility and clinical resistance. Curr Fungal Infect Rep. 2012;6:229–34.

    Article  Google Scholar 

  58. Pfaller MA, Andes D, Arendrup MC, Diekema DJ, Espinel-Ingroff A, Alexander BD, et al. Clinical breakpoints for voriconazole and Candida spp. revisited: review of microbiologic, molecular, pharmacodynamic, and clinical data as they pertain to the development of species-specific interpretive criteria. Diagn Microbiol Infect Dis. 2011;7;70(3):330–43.

    Article  Google Scholar 

  59. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat. 2011;6;14(3):164–76.

    Article  Google Scholar 

  60. Cuenca-Estrella M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect. 2014;20:54–9.

    Article  CAS  PubMed  Google Scholar 

  61. Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol. 2014;166(4):471–84. This is a recent review of antifungal resistance that provides an in-depth review of the current mechanisms of resistance and its implications.

    Article  PubMed  Google Scholar 

  62. Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, et al. Clinical practice guidelines for the management candidiasis: 2009 update by the infectious diseases society of America. Clin Infect Dis. 2009;48(5):503–35.

    Article  CAS  PubMed  Google Scholar 

  63. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, et al. Treatment of aspergillosis: clinical practice guidelines of the infectious diseases society of America. Clin Infect Dis. 2008;46(3):327–60.

    Article  CAS  PubMed  Google Scholar 

  64. Kuper KM, Coyle EA, Wanger A. Antifungal susceptibility testing: a primer for clinicians. Pharmacother J Hum Pharmacol Drug Ther. 2012;32(12):1112–22.

    Article  CAS  Google Scholar 

  65. Lewis RE. Antifungal therapeutic drug monitoring. Curr Fungal Infect Rep. 2010;4(3):158–67.

    Article  Google Scholar 

  66. Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British society for medical mycology. J Antimicrob Chemother. 2014;69(5):1162–76. This is one of the few guideline papers for therapeutic drug monitoring of antifungal agents. It provides a concise review of the literature and summary recommendations for therapeutic drug monitoring of each agent.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Pasqualotto AC, Howard SJ, Moore CB, Denning DW. Flucytosine therapeutic monitoring: 15 years experience from the UK. J Antimicrob Chemother. 2007;59(4):791–3.

    Article  CAS  PubMed  Google Scholar 

  68. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of Cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis. 2010;50(3):291–322.

    Article  PubMed  Google Scholar 

  69. Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, et al. Enhanced bioavailability of itraconazole in hydroxypropylβ-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother. 1998;42(7):1862–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Jaruratanasirikul S, Kleepkaew A. Influence of an acidic beverage (Coca-Cola) on the absorption of itraconazole. Eur J Clin Pharmacol. 1997;52(3):235–7.

    Article  CAS  PubMed  Google Scholar 

  71. Glasmacher A, Hahn C, Leutner C, Molitor E, Wardelmann E, Losem C, et al. Breakthrough invasive fungal infections in neutropenic patients after prophylaxis with itraconazole. Mycoses. 1999;42(7–8):443–51.

    Article  CAS  PubMed  Google Scholar 

  72. Glasmacher A, Prentice A, Gorschluter M, Engelhart S, Hahn C, Djulbegovic B, et al. Itraconazole prevents invasive fungal infections in neutropenic patients treated for hematologic malignancies: evidence from a meta-analysis of 3597 patients. J Clin Oncol. 2003;21(24):4615–26.

    Article  CAS  PubMed  Google Scholar 

  73. Kageyama S, Masuya M, Tanaka I, Oka K, Morita K, Tamaki S, et al. Plasma concentration of itraconazole and its antifungal prophylactic efficacy in patients with neutropenia after chemotherapy for acute leukemia. J Infect Chemother. 1999;5(4):213–6.

    Article  CAS  PubMed  Google Scholar 

  74. Wheat J, Hafner R, Korzun AH, Limj MT, Spencer P, Larsen RA, et al. Itraconazole treatment of disseminated histoplasmosis in patients with the acquired immunodeficiency syndrome. Am J Med. 1995;4;98(4):336–42.

    Article  Google Scholar 

  75. Denning DW, Tucker RM, Hansen LH, Stevens DA. Treatment of invasive aspergillosis with itraconazole. Am J Med. 1989;6;86(6):791–800.

    Article  Google Scholar 

  76. Cartledge JD, Midgely J, Gazzard BG. Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. J Clin Pathol. 1997;50(6):477–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Lestner JM, Roberts SA, Moore CB, Howard SJ, Denning DW, Hope WW. Toxicodynamics of itraconazole: implications for therapeutic drug monitoring. Clin Infect Dis. 2009;49(6):928–30.

    Article  CAS  PubMed  Google Scholar 

  78. Wheat LJ, Freifeld AG, Kleiman MB, Baddley JW, McKinsey DS, Loyd JE, et al. Clinical practice guidelines for the management of patients with histoplasmosis: 2007 update by the infectious diseases society of America. Clin Infect Dis. 2007;45(7):807–25.

    Article  PubMed  Google Scholar 

  79. Gubbins PO, Heldenbrand S. Clinically relevant drug interactions of current antifungal agents. Mycoses. 2010;53(2):95–113.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;8;86(8):805–17.

    Article  Google Scholar 

  81. Imhof A, Balajee SA, Fredricks DN, Englund JA, Marr KA. Breakthrough fungal infections in stem cell transplant recipients receiving voriconazole. Clin Infect Dis. 2004;39(5):743–6.

    Article  PubMed  Google Scholar 

  82. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(9):4793–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, et al. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55(8):1080–7. This was a single center, assessor-blinded, randomized-controlled trial of TDM vs non-TDM for voriconazole therapy. The primary and secondary endpoints were reductions in adverse events and discontinuations associated with voriconazole therapy, respectively. As a subgroup analysis, the investigators determined the response to voriconazole therapy in patients with proven or probable invasive fungal infections stratified by TDM and non-TDM. The result demonstrated a significant reduction in discontinuation of voriconazole with TDM and a greater response to voriconazole therapy with TDM.

    Article  CAS  PubMed  Google Scholar 

  84. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.

    Article  CAS  PubMed  Google Scholar 

  85. Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90. This study set out to determine the factors influencing voriconazole PK, concentration-response relationships for safety and efficacy, as well as modeled dosing regimens that maximize the probabilities of adequate voriconazole concentration for efficacy with the least probability for toxicity The results of this study corroborated dosing practices that clinicians have been using over the past several years with oral voriconazole tablets. The found higher dose of oral voriconazole is necessary to produce similar concentrations to intravenous dosing.

    Article  CAS  PubMed  Google Scholar 

  86. Dolton MJ, McLachlan AJ. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents. 2014;44(3):183–93. Great review of the exposure-response relationship of voriconazole to safety and efficacy.

    Article  CAS  PubMed  Google Scholar 

  87. Cornely OA, Maertens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356(4):348–59.

    Article  CAS  PubMed  Google Scholar 

  88. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Theuretzbacher U, Clancy CJ, Hong Nguyen MH, Derendorf H. Pharmacokinetic/pharmacodynamic profile of posaconazole. Clin Pharmacokinet. 2010;49(6):379–96.

    Article  CAS  PubMed  Google Scholar 

  90. Guarascio AJ, Slain D. Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole. Pharmacother J Hum Pharmacol Drug Ther. 2015;35(2):208–19.

    Article  CAS  Google Scholar 

  91. Krishna G, Moton A, Ma L, Medlock MM, McLeod J. Pharmacokinetics and absorption of posaconazole oral suspension under various gastric conditions in healthy volunteers. Antimicrob Agents Chemother. 2009;53(3):958–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. AbuTarif MA, Krishna G, Statkevich P. Population pharmacokinetics of posaconazole in neutropenic patients receiving chemotherapy for acute myelogenous leukemia or myelodysplastic syndrome. Curr Med Res Opin. 2010;26(2):397–405.

    Article  CAS  PubMed  Google Scholar 

  93. Jang SH, Colangelo PM, Gobburu JVS. Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: evaluating the need to adjust doses based on drug concentrations in plasma. Clin Pharmacol Ther. 2010;88(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  94. Dolton MJ, Ray JE, Chen SC, Ng K, Pont L, McLachlan AJ. Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration. Antimicrob Agents Chemother. 2012;56(11):5503–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Dolton MJ, Ray JE, Marriott D, McLachlan AJ. Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56(6):2806–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Gross BN, Ihorst G, Jung M, Wäsch R, Engelhardt M. Posaconazole therapeutic drug monitoring in the real‐life setting: a single‐center experience and review of the literature. Pharmacother J Hum Pharmacol Drug Ther. 2013;33(10):1117–25.

    CAS  Google Scholar 

  97. Bryant AM, Slain D, Cumpston A, Craig M. A post-marketing evaluation of posaconazole plasma concentrations in neutropenic patients with haematological malignancy receiving posaconazole prophylaxis. Int J Antimicrob Agents. 2011;37(3):266–9.

    Article  CAS  PubMed  Google Scholar 

  98. Lebeaux D, Lanternier F, Elie C, Suarez F, Buzyn A, Viard JP, et al. Therapeutic drug monitoring of posaconazole: a monocentric study with 54 adults. Antimicrob Agents Chemother. 2009;53(12):5224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jarrett R. Amsden declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarrett R. Amsden.

Additional information

This article is part of the Topical Collection on Pharmacology and Pharmacodynamics of Antifungal Agents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amsden, J.R. Fungal Biomarkers, Antifungal Susceptibility Testing, and Therapeutic Drug Monitoring—Practical Applications for the Clinician in a Tertiary Care Center. Curr Fungal Infect Rep 9, 111–121 (2015). https://doi.org/10.1007/s12281-015-0223-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-015-0223-4

Keywords

Navigation